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ABSTRACT

Waiting at traffic signals and getting stuck in traffic con-
gestion eats a lot of time for a commuter in most of the
metro cities of the world. Although there exists a large pool
of navigation applications, but all of them turn out to be
ineffective for dynamically finding out the best route under
uncertainty. In this work, we present Margdarshak, a nav-
igation system which utilizes the impact of congestion and
wait time at traffic signals for estimating the travel time
over a route. We collected a month-long traffic data from
different routes at five various cities in India for analyzing
the problem in detail. The evaluations performed over the
system show that Margdarshak gives a mean estimation er-
ror of ±1.5 minutes, and performs significantly better under
uncertainty, compared to other state of the art navigation
systems like Google Maps, Here Maps and Waze.
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1. INTRODUCTION
The large population and heavy traffic in big cities makes

the travel time estimation to reach destination for the city
commuters a troublesome job [8]. In spite of all estima-
tions and precautions taken to be on-time, more often peo-
ple meets failure because of an unforeseen and unpredicted
road traffic condition. An eye to this problem, which assails
a large pool of commuters during their regular travel on city
roads, should therefore undoubtedly go in the planning of a
smart city. The road traffic in big cities faces two problems
- 1) unpredictable road congestions during the busy hours,
and 2) waiting time at the traffic signals, which may vary
based on the traffic condition. Moreover, sudden congestion
in one road segment may trigger cascading effect to the other
road segments, and traffic signals [13]. Although the previ-
ous studies [10,12–14] develop various mathematical models
for pre-estimating average delay at traffic signals and the
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impact of traffic congestions, however, real time monitor-
ing and estimation of delay under such uncertainty is still
a challenge. Moreover, dynamic and real-time route recom-
mendation, considering such uncertainty, can be of immense
help to the daily commuters of a big city. The growing usage
of smart-phone navigation apps opens up new direction of
solutions to this problem, which we explore in this paper.

State of the art: An ideal navigation system would be
the one which adapts the user’s current route and accord-
ingly makes dynamic adjustment of the travel time estima-
tion. It is affected by several factors, major being the traffic.
On an average, a person in Washington DC annually spends
82 hours in traffic [4]. There are several challenges in esti-
mating travel time while considering the traffic. The effect of
traffic congestion, being the major challenge for travel time
estimation, has been addressed by many state of the art
approaches that utilizes smart-phone or sensor based tech-
nologies. CrowdITS [9] uses crowd-sourced global position-
ing system (GPS) information from different smart-phones
along with annotations done by users to report events like
traffic congestion, accidents etc. However, it requires user
involvement which is a major limitation of their system.
Similarly, [7] is a community based navigation application
which utilizes manual responses for its navigation process.
On the other hand, SMaRTCaR [11] uses off-the-shelf sen-
sors and dedicated modules to get traffic information in real
time. VTrack [16] uses different sensory information, like
Wi-Fi signals, and performs a map matching procedure us-
ing hidden Markov model to estimate the travel time while
considering traffic congestion. The work by Skabardonis et
al. [15] uses several detectors on roads, GPS data from cars
and the traffic signal information to estimate the travel time.
However, all these approaches and even the most commonly
used Google Maps lack the support of taking the effect of dy-
namic wait time at traffic signals into account, which is quite
uncertain during busy hours as pointed out in [13]. Several
news articles, such as [5], often talk about the long waiting
on traffic signals which leads to huge delays in reaching the
destination. Although, [17] utilizes multi-agent reinforced
learning algorithms to learn the functionality of traffic light
controllers and hence estimate the expected waiting time at
the signals, it does not consider the uncertainty during busy
hours, or the back-pressure cascading due to traffic conges-
tion.

Limitations: In summary, we identify several limitations
of the state of the art, which are enumerated below.

• Most of the systems do not consider the dynamics
of wait time at traffic signals. Either they consider



past history, or rely on some mathematical estimation.
Nevertheless, real time monitoring of current informa-
tion is required for accurate estimation of travel time.

• Existing real time monitoring systems depends on man-
ual annotation for accurate navigation [7,9].

• They use of off-the-self sensors [11] which required to
be pre-deployed. This increases infrastructural cost.

• The impact of congestion on travel time is considered,
only when the vehicle itself gets into one. However,
they do not consider the cascading effect on waiting
time.

Contribution: This paper develops Margdarshak, an un-
obtrusive travel time estimation system, which senses the
real time traffic condition from the crowd-sourced GPS trails
of the users. Moreover, the system recommends the best
route to take from source to destination location, based on
the current traffic condition; this recommendation is real
time in nature. The core of the system is driven by two key
components (a) the accurate estimation of wait time at the
traffic signals (b) delay in the road segments due to traf-
fic congestion and its cascading effects. It is important to
note that the travel time estimation is a dynamic event; the
estimation varies with the change in the traffic condition.
Moreover, we conduct two months long study in five metro
cities in India - Kolkata, Bengaluru, Hyderabad, Chennai
and New Delhi, to evaluate how the commuter navigation is
affected by the congestion at traffic signals. Based on this
study, we develop a database of 2 routes of each of the cities
– Kolkata, Bengaluru and Hyderabad, and 1 route each at
New Delhi and Chennai, for evaluatingMargdarshak system.
The system gives a mean error of ±1.5minutes over a trail.

Organization: The rest of the paper is organized as fol-
lows. Section 2 describes the motivation behind the work
followed by the overall system overview as discussed in Sec-
tion 3. A detailed description of the system is given in Sec-
tion 4. We then evaluate the system and analyze the perfor-
mance results in Section 5. Finally Section 6 concludes the
paper.

2. MOTIVATION
In this section, we conduct motivational experiments to

highlight the limitation of the commercial travel time esti-
mation tools. In that line, we uncover the different factors
which results in the erroneous travel time estimation. We
conduct experiments in the cities of Kolkata and Bangalore
for one month, with three types of devices namely Moto G2,
Nexus 4 and Asus Zenfone5. This experiment covers in four
routes in these two cities, covering total of 124km.

How accurate are the existing tools? We perform
the experiments with two commercial and popular naviga-
tion tools - (a) Google map [2] and (b) Waze [7] for travel
time estimation. First we evaluate the performance of the
two aforementioned systems against actual travel time in
four different routes. Figure 1 demonstrates the result. We
observe a difference of 8-9 minutes with actual travel time in
different routes, sometimes (say R-4) the error shoots up to
30 minutes. This error may jeopardize one’s travel plan con-
siderably. The error gets more prevalent with Waze. Close
inspection reveals that, most of the vehicles get stuck in con-
gestion or at traffic signals, which results error in travel time
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Figure 1: Travel Time Estimation
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Figure 2: Travel Time Trend over a Day
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Figure 3: Trend Over Multiple Days

estimation. This points to the fact that, accurate waiting
time estimation at different traffic signals may substantially
improve the estimation of commute time.

What is the impact of time of a day? We explore
the accuracy of travel time estimation at different time of
the day. Figure 2 illustrates the trend of travel time over
a day for a two hour interval for two routes. This is intu-
itive to observe that in early morning, the traffic signal and
congestion do not incur much error due to low traffic. How-
ever, travel time is high in office hours, between 8 am to 6
pm, with 6 pm showing the peak. This time window would
also show the high impact in congestion and delay at traffic
signals, resulting incorrect estimation of commute time.

Does past data help? Several existing strategies [10,12,
14,17] make use of past data to predict travel time. However,
Figure 3 reveals that, past data fails to predict travel time in
many cases. The plot shows the travel time variance for two
different routes, over a full day from Mon-Thu in a week.
We observe that the travel time variance is as high as 100
minutes in the same route.

3. SYSTEM OVERVIEW
Figure 4 shows different components of Margdarshak, which

follows a client-server architecture. Database is generated



with the help of war-driving data with annotated traffic sig-
nals. The server-side component implements this processed
database and the navigation modules, whereas the client-
side implements the online module running on the smart-
phone, which is responsible for initialization of a trip and
crowd-sourced data collection.

3.1 War-driving
The proposed system estimates the travel time and de-

termines the best travel route from the (a) past data and
(b) the current state of the car movement (inferred from the
smart-phone sensors, refer Section 3.3). In order to get the
past data of the route information, we relied on the war-
driving approach. We develop a smart-phone app to collect
the route data, where we log the time-stamped GPS traces
for different city routes. The volunteers covered 8 different
routes, at the city of Kolkata, Bangalore, Hyderabad, New
Delhi and Chennai. During the data collection, they also
manually annotate the locations of the traffic signals on the
route. The collected data is processed to develop the repos-
itory of the routes.

Database Generation: The core of the database is
a table called Traffic Signal Details Table which stores the
complete route details. Each row stores the next traffic sig-
nal ID in the current route, the previously encountered sig-
nal ID the distance between these two signals, and the wait
time associated with the next traffic signal. However, one
traffic signal may be part of multiple routes, and we would
have to store duplicate signal specific information in this ta-
ble. Moreover, there can be multiple routes, hence we need
to store the route details multiple times; this increases re-
dundancy in the table. Hence we take help of the following
two auxiliary tables to normalize the database, (a) Traffic
Signal Table and (b) Route Table. The Traffic Signal Table
stores all the signal locations and their IDs. A particular
signal can be a part of multiple routes, and therefore we
also need to separate the routes. The Route Table stores
the information of a specific route, i.e, the route ID and
route name.

3.2 Server Side
Server side implements the navigation infrastructure com-

prising of database processing and navigation. The details
follow.

3.2.1 Processing of Database

The most crucial and expensive operation of the system is
the continuous polling to the database since parallel queries
from different clients will slow down the system considerably.
In order to ensure faster access during navigation, we store
the database in a directed weighted graph, called a Route-
Signal (RS) Graph. Each nodeNi in the RS graph represents
a traffic signal i. The edge Ei,j between the two signals i

and j contains the weight as the distance between those
signals. Hence, the database is queried only at the start
of the trip and once the RS graph gets generated, all the
operations are performed on this graph. From the database,
the RS graph is generated by (i) joining the Traffic Signal
Table and Route Table to get route specific signals then (ii)
further joining with Traffic Signal Details Table to get the
right order of signals along with details. It is important to
note that, the RS graph can also be automatically extracted
from the city map (using [1] and the assumption that there

Figure 4: System Architecture of Margdarshak

would be a traffic signal at every road crossing), when we
do not have war-driving data with manual annotation of
signals; this may mitigate the cold start problem.

3.2.2 Online Navigation

The navigation module discovers the best route between
a source-destination pair, that provides minimum estimated
time of arrival (ETA). The ETA denotes the time to reach
the destination following a feasible route, and needs to be
dynamically updated based on the current road traffic. How-
ever, during the run-time, the recommended travel path may
get changed based on the real time ETA information. ETA
has two major components:

• A fixed time component based on the speed of the ve-
hicle and distance. This takes into account the time
taken from source to the first signal, time taken to
reach the last signal from the first signal and then from
the last signal to the destination. Note that most of
the wait time variability is in between the first sig-
nal and the last signal, which is captured in the next
component.

• A dynamic time component which is calculated on the
basis of the wait time at signals and any delay because
of congestion. A traffic congestion may result in cas-
cading delay in wait time at the signals.

3.3 Client Side
The client side of the system, running on the smart-phone,

implements the two modules: (a) crowd-sourced data collec-
tion, and (b) user interface. Data collection module collects
sensor data from the smart-phone and gets the annotation
input from the user (in the form of app). The output of
this module from several such app users is crowd-sourced
by the server to construct the database and the RS graph.
User interface (mostly relies on the Google map) extends
the facility such that a user can interact with the system
by providing her source and destination information. It also
provides the display such that she can get the the recom-
mended route and its ETA.

4. METHODOLOGY FOR MARGDARSHAK
In this section, we propose the methodology for accurate

ETA estimation and dynamic route recommendation. It has
three components – (a) user initialization – where commuter
initiates the process, (b) online navigation – where system



estimates the ETA and recommends the best route, and (c)
the user interface to interact with the commuters.

4.1 User Initialization
The user, once starting the system, provides the source-

destination information to the client module. This is the
only time that the database is polled; immediately the Route-
Signal (RS) Graph gets generated from the table. Now every
successive processing is done on the RS graph.

As mentioned earlier, the dynamic time component is
computed based on the wait time prediction at all the traffic
signals in the route. Therefore the system needs to locate
the traffic signals that one may encounter on the probable
routes. Next, the system extracts the probable routes from
the database and annotates the signal information for those
routes. Therefore in the initialization process, one major
challenge is to locate the nearest traffic signal succeeding the
source location and the nearest preceding signal of the des-
tination location. Finding the closest signal may not solve
the problem because the preceding signal (instead of suc-
ceeding) can also be the closest one for the source location;
same might occur with the destination location. This issue
is resolved using the following methodology:

1. Convert the signal positions to Universal Transverse
Mercator (UTM) [6] plane following the standard pro-
cedure. Let the sequence of signals on a route be
{Si, Sj , Sk, ...}

2. Start with the first two traffic signal pairs Si and Sj

on the route (first signal and the succeeding one) and
obtain the equation of the line.

3. Project the source location co-ordinate T on this line.
If this location lies on the line segment, in between the
two above points, then the traffic signal Sj is the re-
quired succeeding signal. Otherwise try with the next
pair of signals, say Sj and Sk.

4. Try this for a set of pairs within a given distance from
the source. Otherwise, take the first signal Si as the
succeeding signal.

5. Follow the same process for destination; In this case
the preceding signal is the required one.

Illustration: Consider an example scenario in Figure 5.
The user selects the source location T at a point between
signals S2 and S3. The system has the sequence of signals
{S1, S2, S3, S4, S5, ...} stored in the database for a probable
route, and the server needs to identify the nearest succeeding
signal for the starting position T . If the closest signal gets se-
lected, then S2 will be chosen as the succeeding signal, which
is erroneous. Hence, following the aforesaid algorithm, we
draw the line L1 passing through signals S1 and S2. Then
we project the point T on the line. It is easily observable
that the point T wouldn’t lie on the line segment between
S1 and S2. Hence, we move on to the line L2 between S2
and S3. We then project the point T on the line segment
created by L2. This time T lies on the segment line L2 and
L3, hence, signal S3 gets selected as the succeeding signal of
source T .

4.2 Online Navigation
Once the user provides the source-destination location,

the next task is to discover the best route dynamically.

Figure 5: Deciding which signal to select. The system has the
sequence of signals {S1, S2, S3, S4, S5} stored in the database.
Draw the line L1 passing through signals S1 and S2. Projected
point of T doesn’t lie on line segment between S1 & S2 but lies
on the line segment between S2 and S3 of line L2. Hence, signal
S3 gets selected as the succeeding signal of source T

Whenever the user arrives at a signal, the system recalcu-
lates the route based on the ETA. This is basically done by
estimating the ETA across all the possible routes (from the
RS graph) and selecting the best one. As mentioned earlier,
the ETA estimation takes into account two factors into con-
sideration: (a) the fixed component of wait time at traffic
signals, and (b) the dynamic wait time component due to
traffic congestion. Next we discuss how these two aspects
are handled.

4.2.1 Fixed Wait Time Component at Traffic Signals

The fixed time component is computed from the past his-
tory by finding out what is the average wait time at every
signals on a route. However, considering outdated informa-
tion may result error in estimation, as the wait time has
correlation with the day as well as the time of the day. Con-
sidering these facts, we split the 24 hours of a day into a
number of fixed time-zones, and the first vehicle in a time
zone, that provides crowd-source information about the wait
time, is called the bootstrapping vehicle. The bootstrapping
vehicle helps in the initial calibration of wait-time at the
signals, and the information collected from subsequent ve-
hicles contribute to improve the accuracy. Accordingly, we
consider the following points during estimation of the fixed
wait time component at different traffic signals.

• By default, a signal has an associated wait time Γ
stored in the database. The bootstrapping vehicle
helps to calculate the extra τ wait time that the signal
has due to congestion. Also, τ can be negative in cases
when signal is clear.

• Each signal thus has a time (Γ+ τ ) linked to it, which
is further refined (updated in the database) by crowd-
sourcing through several vehicles passing by. This up-
dated time is used to calculate the new dynamic time
of a trip.

Illustration: Assume that in a trip, a vehicle encounters
a series of signals {S1, S2, ..., Si, ..., Sn} between the source
and the destination. When a bootstrapping vehicle starts,
say it takes a time T to travel from the source to S1. At S1,
say it waits for an additional τ1 time apart from the normal
wait time Γ. Then we can calibrate this signal’s wait time
as Γ + τ1. This would continue for the other signals too.



So, eventually the wait time at each signal i can be given
as Γ + τi, where τi ≥ 0. It should be kept in mind that if
there are n signals on a route its not necessary that all these
signals are bootstrapped using a single vehicle. Multiple
vehicles can bootstrap parts of the route. Now, whenever
a new vehicle arrives, it has the information of τi at each
signal (which can now be used for better estimation) and
might further get updated in some scenarios.

4.2.2 Dynamic Wait Time Due to Congestion

Congestion is detected by observing the speed and loca-
tion change of a vehicle in a small area. The system checks
if the vehicle is having very low speed (computed from ac-
celerometer readings), and also if the location is not chang-
ing much, and also this is the same for other vehicles in
that region. Congestion can be observed at a traffic signal
or at any other location. The one at traffic signal will be
taken care by the same module as discussed earlier. The
latter case would decrease the speed of vehicles by a factor,
which would reflect on the travel time. This dynamic factor
of reduction of speed is taken into account for updating the
dynamic time due to congestion in areas other than traf-
fic signals. This factor is calculated as the mean over all
the vehicles in that area. Many of the current applications
do take into account the impact of congestion on the travel
time but this impact is only effective if the vehicle itself gets
into congestion. Our system continuously runs a congestion
detection thread and finds the impact on the travel time of
the vehicle by modifying the speed for the congested region
while calculating the travel time.

Once the fastest route is selected, navigation starts and
the ETA gets updated every second. The system is re-
calibrated at each signal on the route. Further, any occur-
rence of congestion is accounted for, as and when it happens.
A background thread always keeps on checking the possibil-
ity of congestion on the route.

4.3 User Interface
On launching the application, the user gets a map where

she can select the source and the destination. Once the
system gets this input, it estimates the time taken on all the
possible routes and selects the fastest one by default, which
the user can change. Once the navigation starts, the travel
time is decreased with respect to the vehicle speed and is
recalculated at each signal.

5. PERFORMANCE EVALUATION
We conduct experiments to evaluate the performance of

Margdarshak for eight different routes across five metro cities
in India – two routes each in Bangalore, Kolkata and Hyder-
abad and one each in Chennai and New Delhi. In our exper-
iments, the volunteers traveled on these routes, and used the
app for a week at different time of the day. The collected
data is used for analyzing the performance of the system.
We compare our system with Google Maps [2], Waze [7]
and Here Maps [3]. In this section, we explain in detail the
experimental set up and performance of Margdarshak.

5.1 Experimental Results

5.1.1 Competing Heuristics

The key feature of Margdarshak’s efficiency is its dynamic
updates on travel time estimation on the basis of traffic

Figure 6: Application Screen-shot
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congestion and wait time at traffic signals. Figure 7 rep-
resents the travel time estimation for different routes by dif-
ferent state of the art platforms mentioned above. Clearly,
Margdarshak outperforms other platforms with a significant
difference in travel time, as Google Maps and Here Maps
highly rely on past data which leads to error prone travel
time estimation. In addition to that, Waze also involves hu-
man annotated events, which may or may not be accurate
at any instance of time.
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5.1.2 System Evaluation

We evaluate our system on the basis of two aspects as
follows.

Improvement in accuracy through Crowd-sourcing:
Margdarshak takes full advantage of crowd-sourced GPS
data to improve its accuracy in a timely manner. Figure 8



shows travel time estimation in different scenarios on a spe-
cific route in Bangalore. The horizontal axis depicts the
travel from source to destination on that route. Along with
the actual travel time, we show the estimated travel time
in the cold start scenario (the bootstrap trail, when there
is no prior information), trail 1 (sometime after the boot-
strap trail, when few vehicles have passed on that route and
provided information via crowd-sourcing) and trail 2 (some-
time after trail 1, we have information from more vehicles).
As we can see from the figures, although the error rate is
higher during the cold start, but it reduces rapidly as soon
as more number of vehicles travel through the same route.
The estimated value for trail 2 is significantly closer to the
actual travel time.
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Travel time estimation accuracy: Finally, Figure 9 further
concretes the claim of high accuracy in travel time estima-
tion. We show the actual travel time and the estimated
travel time for two cases – (a) the travel time is updated
at every second throughout the route, and (b) the time is
calibrated at every signal. The figure shows that the mean
error of travel time estimation is ±1 min at the traffic signals
and ±1.5 min throughout the route, whereas the maximum
error is 3.5 min at signals and 4.9 min throughout the route.
This indicates that dynamic update of routes based on the
crowd-sourced information of waiting time at the signals can
make actual travel time closer to the estimated travel time.
It should be noted that the mean travel time error is low at
the traffic signals because of recalibration. Every time, the
error starts accumulating, it is reduced at the signal and so
the low error.

6. CONCLUSION
The problem of estimating travel time has been targeted

several times and versatile solutions have been made avail-
able for the same. However, they have their own limitations
as most of them do not consider dynamic re-routing under
uncertainty. Some rely on historical data, whereas some re-
quire user annotations or external hardware to tackle the
problem. In this paper, we presented Margdarshak, a dy-
namic, crowd-sourcing based travel time estimation system
for private vehicles, which estimates traveling duration on
the basis of real time traffic congestion and wait time at
traffic signals. Several experiments conducted over differ-
ent cities, while comparing with existing systems like Google
Maps, Here Maps and Waze, show that Margdarshak stands
ahead of all with promising results. The system delivers
a mean error of ±1minute on traffic signals while that of
±1.5minutes throughout the route.
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