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Abstract—The growth in the market for cab companies like
Uber has opened the door to high-income options for drivers.
However, in order to boost their income, drivers many a time
resort to accepting trips which increases their stress resulting in
poor driving quality and accidents in serious cases. Every driver
handles stress differently and the trip recommendation thus needs
to be on a personalized level. In this paper, we explore historical
trip data to compute the driving stress and its impact on various
driving behavioral features, captured through vehicle-mounted
GPS and inertial sensors. We utilize a Multi-task Learning based
Neural Network model to learn both the common features and
the personalized features from the driving data to predict the
stress level of a driver. We further establish a causal relationship
between the stress level of a driver and his driving behavior.
Finally, we develop a trip recommendation system for cab drivers
to avoid stress driving. The models have been tested over both
a publicly available dataset with 6 drivers for 500 minutes of
driving data and an in-house collected dataset from 8 drivers
over 1700 trips for 5 months. We observe that the proposed
model gives an average prediction accuracy of 94% with low
false-positive rates. We also observed that the driving behavior
is improved when a driver takes a recommended trip.

Index Terms—Driver Trip Recommendation; Driving Stress;
Driving Behavior; Multi-task Learning; Causality Analysis

I. INTRODUCTION

The huge surge in the number of drivers joining ride-sharing
companies like Uber, Ola, Lyft, etc. can be linked to the
high-income opportunities these farms provide [1]. However,
the drivers, in order to further boost their income, resort to
taking more trips or high paying trips neglecting how this is
affecting their driving quality. This trend is more prominent
in developing countries where stress acts as a major factor
for poor driving behavior and compromising road safety [2].
Various recent studies revealed that factors like stress-driving,
road rage, driving under fatigue or poor mental conditions etc.
are predominant among the ride-sharing and taxi cab drivers
across low-income and middle-income countries [3]. In this
context, it is essential to develop a system that could assist
the drivers & the farms to decide whether to take the next trip
depending on the current stress level of the driver.

Although the relationship between driver stress and driv-
ing behavior has been studied before [4], [5], the existing
literature mostly relies on physiological sensors or surveys.
These methods are quite obtrusive and difficult to be used
for a long period. Moreover, physiological sensors are costly
for mass-scale deployments over the drivers at low-income
and the middle-income countries. On the contrary, spatial and

inertial sensor data are widely available – cars are in-general
GPS enabled; even a smartphone can provide sensor data. This
opens up the opportunity to study driving data under different
road and driving conditions and to correlate the stress profile
of a driver with corresponding driving behavior.

However, correlating stress profile of a driver and driv-
ing behavior from historical data of driving trajectories has
multiple challenges. First of all, several direct and indirect
factors, such as driving schedule, road & traffic conditions
contribute to the stress profile of the driver. Hence, quantifying
stress as well as driving behavior, which are subjective in
nature, is important. Second, personality traits have a direct
impact on the stress profile of a driver [6]; therefore, the same
level of workload would impact multiple drivers differently.
A generic model may not be suitable for all the drivers,
and behavioral patterns of the individuals need to be learned.
Moreover, driving behavior may vary among drivers even for a
similar driving environment; for example, a driver may engage
in rash driving only under stress, whereas rash driving may be
a general behavior for another driver.

In this paper, we rely on a large pool of spatio-temporal
driving dataset to develop a system which predicts the impact
of past driving attributes on the stress level of a driver and
his driving behavior under various driving and environmental
conditions (§IV). We first conduct an interview based survey
to understand the effect of various parameters which results in
driving stress (§III). Subsequently, we develop a model which
computes driver’s stress based on the driving schedule roster
and his personality traits (§V). In order to include various
individual-centric factors, we implement a neural network
learning approach based on multi-task learning [7]. Simulta-
neously, we develop a mechanism to score the driver’s driving
behavior from the recorded sensor data (§VI-A). Finally, we
develop a model to predict the driving behavior at any later
stage from the calculated driver stress; this model is based on
the detailed correlation as well as causality study which depicts
that driver stress impacts driving behavior (§VI-D). Finally,
leveraging on this relationship, we develop a recommendation
system to suggest if the driver should take a trip or not (§VII).
We evaluate our system over UAH-DriveSet data [8] and an
in-house driving dataset collected for a period of five months
(§IV) from 8 drivers (≈ 1700 trips) using a custom-made
device deployed on various cabs.



II. RELATED WORK

The need to define a relationship between stress and driving
behavior has been a buzz among the researchers for quite
a time in the medical field. In this section, we present a
brief survey of the existing literature broadly focusing on four
aspects of our work – (a) stress modeling, (b) driver behavior
identification, (c) relating stress and driving behavior, and (d)
trip recommendation system.
Stress Modeling: As early as 1900; several works tried to
use physiological sensors to calculate stress [9]. Rise in the
number of accidents directed researchers to explore physio-
logical data to quantify various stress parameters of drivers
using methodologies such as correlation analysis [10], pattern
recognition [11], using machine learning techniques [12].
However, their reliance on physiological sensors or personal
surveys made them obtrusive.
Driver Behavior Analysis: In the later 1980s, driving be-
havior addressed as an extension of the problem-behavior
theory [13]. Increasing number of vehicles made the problem
a generalized one [14]. Recent works try to model and provide
a score to the driving behavior for safe driving [15], [4].
In [16], [8], the authors have designed machine learning based
techniques to identify several abnormal driving behaviors like
weaving, sudden brakes, etc. and provide a score to the drivers.
Relationship between Stress and Driving Behavior: Various
works [17], [18] have explored the reasons for the abnormal
driving. In [19], the authors have shown that drowsy driving is
one of the major factors behind road fatalities. Scott-Parker et
al. [5] have attributed stress as a major factor behind abnormal
driving. However, to the best of our knowledge, no existing
works have developed a predictive model to correlate driving
behavior with the stress profile considering hidden factors,
such as the personality traits and the driving environments.
Trip Recommendation Systems: Existing trip recommenda-
tion systems provide preference to passenger needs and assign
a trip to the driver. Some works observe which are the best
matching driver/commuter pairs [20], [21], while others [22]
provide algorithms to assign chain trips to drivers. [23] moves
one step ahead and scores the driver after assigning a trip.
However, none of these systems address if assigning the trip
would adversely affect the driver. Consequently, in this paper,
we devise a recommendation system which based on a driver’s
personality traits, decides how a trip would affect his driving
behavior and recommends him to accept/reject.

III. MOTIVATION AND CHALLENGES

The major motivation of this work comes from the need
of analyzing driver stress due to workload, which is highly
linked to road safety and the need to stop drivers from taking
risks. In order to understand the different intricacies such as
effect of workload and the type of trips a driver prefers, we
performed a survey over 30 drivers in different cities of India.
The survey results are given in Fig 1. The major takeaway from
the survey is that most of the drivers are stressed when they
have to take long distance trips, followed by long trip time and
low rest time (Fig. 1(c)). This brings out the personalization

Fig. 1. Driver Survey Report (a) Years of Experience (b) Avg. daily trips
(c) Features (Table II) which affect the driver’s driving most (d) If a driver
prefers a long trip or more short trips (e) If the driver prefers to drive more
at night instead of day for extra commission? (f) Regretted taking a trip

aspect of driving stress as different drivers are affected by
diverse factors. Fig. 1(d) shows that there are drivers who
prefer to take long trips while almost similar percentage of
drivers prefer to take multiple short trips instead of a single
long trip. Furthermore, as Fig. 1(e) suggests, there are both
classes of drivers; one who prefer to drive more at night to
boost their income and other who would rather take more day
trips. It is evident from Fig. 1(f) that a significant fraction of
drivers accept a trip when assigned, but later regret for taking
it as it was more stressful for them and affect their driving.
Fig. 1(d,e,f) highlights the need of developing a system to
recommend if a driver should accept a trip or skip it based on
their past driving history.

From the aforesaid observations, we infer that different
drivers are stressed by various factors and they prefer to
avoid stressed trips. Therefore, we need a trip recommendation
system for avoiding stress driving. However, developing such
a system has a number of research challenges as follows.
(1) In order to develop a non-obtrusive system, we need
to avoid the physiological sensors for stress calculation. (2)
Stress relies heavily on the individual’s personality traits.
Traditional machine learning approaches fail to account for
such individual differences. (3) Although we have the stress
model along with the driving score, a mere correlation between
the two does not imply that a particular driving behavior is
caused by the driver’s stress. Therefore, a methodology needs
to be designed to infer a causal relationship between the two.
(4) Rejecting trips in any system incurs some penalty for a
driver which requires to be addressed as a multi-objective
problem.

IV. DATASET DESCRIPTION AND SYSTEM OVERVIEW

In this section, we give a brief overview of the datasets used
in the study along with the overall system model.

A. Datasets

In this paper, we conduct the experiments on two datasets
– (i) UAH-DriveSet data [8] and (ii) an in-house dataset



TABLE I
DRIVER AND CAR DETAILS FOR IN-HOUSE DATASET

Driver Age Range Vehicle Model Fuel Type Number of Trips
D1 20-30 Tata Indigo Diesel 282
D2 20-30 Hindustan Ambassador Diesel 321
D3 20-30 Hindustan Ambassador Diesel 325
D4 30-40 Tata Sumo Diesel 72
D5 30-40 Maruti Suzuki Dzire Diesel 67
D6 20-30 Tata Indigo Diesel 80
D7 30-40 Maruti Suzuki Dzire Diesel 75
D8 20-30 Maruti Suzuki Alto Petrol 405

collected for 8 drivers, over a period of five months for ≈ 1700
trips. The brief description of these two datasets follows.

1) UAH-DriveSet: The UAH-DriveSet data [8] is a public
dataset captured by the driving monitoring app developed by
the authors. The data were collected for five male drivers
and one female driver in the age group 20 − 50 over two
different routes in Spain – (i) 25 km round-trip in a motorway
type of road with 3 lanes in each direction and 120 km/h
of maximum allowed speed, and (ii) 16 km round-trip in a
secondary road with one lane in each direction and around
90 km/h of maximum allowed speed. The data contains both
inertial sensors and GPS data along with a video clip for all
the trips. The complete dataset has over 500 minutes of driving
data. The data is labeled with three different driving behaviors
– normal, drowsy and aggressive.

Fig. 2. (a) Data collection device, (b) Route length distribution for all the
drivers for the collected in-house dataset

2) In-house Dataset: Apart from the UAH-DriveSet data,
we also collect a large pool of spatio-temporal driving data for
8 drivers over five months using custom-made sensing device
deployed over the cars of two local cab companies (2 cars and
5 cars respectively) and one personal car. The data has been
collected from a natural and uncontrolled environment, where
the cab companies rent the cabs based on the requisitions from
the customers. However, a single car is always driven by a
single driver (details in Table I). The device developed for data
collection is shown in Fig. 2(a) which contains inertial sensors
like accelerometer, gyroscope and magnetometer, GPS sensor
and a camera mounted on a Raspberry Pi device connected
with external power supply through an 11000 mAh power
bank. This custom-made device was mounted on the car
dashboard and it continuously collects timestamped data while
the car is on a trip. The cars were driven by 8 male drivers of
age group 20–40; the details of the drivers and cars are given
in Table I. We have collected data for around 1700 trips over
15 major routes and their sub-routes covering highways, urban

Fig. 3. Block diagram of the developed system

and rural roads. The distribution of the route lengths is given
in Fig. 2(b).

B. System Overview

The proposed system can be divided into four broad mod-
ules as shown in Fig. 3.
Driver Stress Model: In this module, we assert that driver’s
trip roster has a major impact on his stress; hence, we aim
to model the stress levels based on the roster-based factors
such as the number of trips, the travel time, the rest time, etc.
Furthermore, to address personality traits of different drivers,
we develop a personalized stress model for each driver.
Driving behavior model: We model the driving behavior
based on three aspects – (a) over-speeding instances, (b)
interactions with road anomalies like speed breakers and
potholes and (c) frequency of dangerous maneuvers [24] such
as sudden brakes, sharp turns, side-slipping, etc.
Predicting driving behavior from driver stress: We perform
both correlation and causality analysis over driver stress and
driving behavior to infer their relationships. Following this, we
develop a machine learning based regression model to predict
the driving behavior score from the driver stress model.
Trip recommendation: Finally, we use the driving behavior
prediction model to predict the impact of the driving stress
over the next possible trip of the driver. Whenever a new trip
arrives, the trip details are fed to the stress model to compute
the stress level considering the trip to be taken, and this is
used to predict the driving behavior score. Based on this score,
we recommend the driver to take or not to take the trip to
ensure driving safety. The following sections provide a detailed
description of each of these modules.

V. DRIVER STRESS MODEL

In this section, we construct a model to compute driver
stress based on the historical trip information captured through
various sensing data. We extract trip related features given in
Table II from the collected sensor data and compute stress
for the respective drivers. The model classifies driver stress
into three categories, viz., no stress, medium stress, and high
stress. Notably, the proposed model is sophisticated to capture
the personality traits of the individual drivers.



TABLE II
BASE FEATURES USED FOR THE MTL-NN MODEL.

Feature Description
No. of trips (nT ) Number of trips the driver has covered including the current one.
Trip time covered
(tT )

Time for which the driver was driving starting from the first trip.

Trip distance cov-
ered (dT )

Distance for which the driver was driving starting from the first
trip.

Rest time (rT ) Time for which the driver had taken rest after the last trip.
Time of the day (z) Divided into 4 time zones. 6 AM -10 AM(0), 10 AM- 4 PM(1),

4 PM - 10 PM(2), 10 PM - 6 AM(3)
Congestion (C) Calculated from the trajectory data using existing models [25]
Road Type (r) City (0), Highway (1), Rural (2). If multiple road types are on the

same trip, then the score is calculated as the weighted average
over the distance for which each type of road was driven on.

Fig. 4. MTL-NN architecture for personalized stress modeling

A. Model Development

Effectively, the model takes the trip information of the driver
as input (given in Table II) and computes the driver’s stress
label. We develop the driver’s stress model using the Multi-
task learning (MTL) strategy [7]. Here computing the stress
level of each driver is considered as one task in the multi-
task model. The objective of the model is to conduct a robust
learning by (a) shared learning: learning features of one driver
(one task) using the related features of other drivers (related
tasks), and (b) task-specific learning: side by side, some part
of the model allows to become specialized to compute the
stress of the specific driver. This part handles the personality
traits by considering each driver as a separate task.

Fig. 4 depicts the multi-layered architecture of Multi-task
learning Neural Network (MTL-NN). The input layer contains
the feature vector, obtained from the trip information, which is
fed into the network. The next layer is the shared layer which
contains a set of hidden nodes; the parameters of these nodes
are shared across other nodes of this layer for all the tasks.
This shared layer enables inductive transfer which improves
learning for one task (say, the stress profile of one driver) by
using the information contained in the training signals of other
related tasks (say, the stress profiles of other drivers). This
improves the overall model performance since some features
may be easy to learn for driver A while being difficult to
learn for another driver B. This might occur since the driver B
interacts with those features in a more complex way than driver
A. The shared layer allows the model to eavesdrop from driver
A, and learn the features for driver B. On the other hand,

MTL-NN also allows few hidden nodes to become specialized
for computing stress of just one driver (i.e. specialized in one
task); this personalized stress computation, by capturing the
characteristics of the specific driver, is carried out in the final
task-specific layer. In this layer, stress computation of one
specific driver can ignore the hidden nodes connected to other
drivers, by keeping the weights connected to them small, as
they do not appear useful. In this layer, the learning mechanism
maps the generalized information learned at the shared layers
to a final prediction personalized by the characteristics of the
specific driver (task).

B. Model Training

We train the MTL-NN model over the HCILab dataset [26].
This dataset contains driving information of 10 drivers (3
female and 7 male), between 23 – 57 years of age, covering
four trips each. The trip duration ranged from 2 minutes to 35
minutes. The collected driving data includes acceleration along
the three axes, light, and GPS coordinates, speed, altitude, and
bearing. Additionally, the dataset also records timestamped
physiological sensor data, like electrocardiogram (ECG), skin
conductance rate, body temperature, heart rate and the heart
rate variability, for each driver. We extract the base features
from the trip details, as summarized in Table II. Additionally,
we leverage on the multiple derived features computed from
statistical properties such as mean, variance, kurtosis and 80th

percentile calculated on those base features. Finally, a feature
set constituting of a total of 27 features is built, which along
with the loss function for softmax regression [27] is used to
train our model. It can be noted that the physiological sensor
data are used in this work just to generate the ground truth
levels, and are not used for actual prediction model.

1) Ground Truth Stress Labels: We leverage the model
proposed in [28] to compute the driver stress from the recorded
physiological data, which is used for ground truth generation
for the HCILab dataset. The model classifies driver stress
into three classes, no stress, medium stress, and high stress.
It is built upon eight standard ECG features, viz., average
QRS, RR, QQ, SS, QR, RS intervals, average heart beats
and average difference beats derived from the physiological
sensors available in the PhysioNet dataset [29]. The PhysioNet
dataset contains the data of different types, viz., time stamp,
electro-cardiogram, EMG, foot GSR, hand GSR, heart rate and
respiration rate, collected for 17 healthy drivers in Boston area.
The data was taken using sensors that the drivers wore driving
on prescribed routes including city streets and highways. The
trips were of duration ranging from 25 – 93 minutes. Since
the window size was not specified in [28], we determine it
empirically based on existing literature [30] to obtain identical
results. Based on the empirical results we implement a sliding
window (of window size 15 seconds and shift of 500 ms) to
compute the features and assign ground truth labels for each
time window. Similar to [28], we implement the decision tree
algorithm to classify driver stress labels from physiological
data in PhysioNet dataset [29] obtaining 86% accuracy with
a train-test split of 90%–10%. The 10% holdout is drawn



randomly from the data and hence belong to multiple windows.
We use this (validated) model to generate the ground truth
stress label for each driver in the HCILab dataset. For that,
we extract the features from physiological data available in
the HCILab dataset for each time window and compute the
respective stress label.

C. Model Evaluation

We evaluate the proposed MTL-NN model for stress cal-
culation on the HCILab dataset. We calculate the features
provided in Table II in each time window (15 seconds and 500
ms slide) and trained the model using ground truth stress labels
generated using the PhysioNet dataset. The data is divided into
non-overlapping set of 80% and 20% for training and testing
respectively. Moreover, the training portion is divided as 60%
and 20% of data for training and validation, respectively.
Simultaneously, we implement a Single Task Learning (STL)
based neural network model to train each driver in isolation,
which we consider as the baseline for evaluation, where
personality traits are not captured. Considering the unbalanced
dataset (as in general, most of the data points are in non-
stress class), we calculate the results for the Area Under the
Curve (AUC) metric. Since we provide the multi-class result,
we examine a forced binary classification method using the
one versus all method, i.e, considering no stress as one class
and the other two combined as the second class; similarly,
for the medium-stress and the high-stress, we consider the
other two combined as the second class. We then plot the
ROC for all these separate scenarios and give the AUC result
aggregated over the number of classes. We observe that the
MTL-NN approach has an AUC of 0.931 which is a significant
improvement compared to the STL approach where we get an
AUC of 0.794. Fig. 5 illustrates the high prediction accuracy
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Fig. 5. Driver specific results for STL and MTL-NN

and the AUC for all the 10 drivers demonstrating the utility
of the MTL-NN model in personalization.

TABLE III
COMPARISON WITH SYSTEMS WHICH RELY ON PHYSIOLOGICAL

SENSORS

Model Area Under Curve
Salai et. al. [30] 0.75
Shi et. al. [31] 0.62

Singh et. al. [32] 0.94
Our Model 0.93

In-order to check if this system fares similar to some of
the existing systems which rely on physiological sensor data

Fig. 6. Heat map showing which features affect a drivers stress computation
most based on Sobol indices

only, we compare our model with three existing systems.
The first work by Salai et. al. [30] develops a simple stress
detection algorithm using only time-domain HRV features.
The second work by Shi et. al. [31] builds a personalized
stress detection algorithm using SVM. They rely on heart rate,
ECG, skin conductance and respiration and temperature related
features. The final work which we compare with is by Singh
et. al. [32] and develops a neural network based model for
stress computation. In order to compare the systems, we use
our model to compute stress using driving data, whereas for
the competing models, we use the physiological sensor data.
Table III gives the AUC result,calculated same as before, for
all the four models. We observe that our model fares better
than [30] and [31] and gives almost similar result as [32].
This ensures that the idea to detect stress using driving data
is equally effective as using physiological sensor data.

In Table IV, we rank the base features based on the classifi-
cation importance by performing the sensitivity analysis using
Sobol Total Order Indices [33]. A confidence score below
10% implies that the sample size provided is sufficient for
the analysis and the measured indices are significant. Notably,
the distance covered impacts driver stress most, followed by
the driving time, and the rest time, as we observe from the
total order indices value.

TABLE IV
SOBOL TOI FOR THE BASE FEATURES. TOI: TOTAL ORDER INDICES,

TOC: TOTAL ORDER CONFIDENCE

Feature dT tT rT nT C z r
TOI 0.942 0.897 0.813 0.758 0.699 0.504 0.448
TOC (%) 3.1 3.4 2.9 3.3 3.1 2.8 2.6

The major advantage of the proposed stress model is its
ability to understand a drivers personality traits. Fig. 6 shows
the effect of the multiple features on the driver stress, cal-
culated using Sobol total order indices [33]. The heat map
shows considerable variation of feature importance across the
drivers. For instance, (i) time-zone (z) has little importance on
drivers D6 or D8 (ii) driver D14 is impacted by a small subset
of the features (iii) whereas driver D2 or D3 are impacted
significantly by all the features.



VI. PREDICTING DRIVING BEHAVIOR FROM STRESS

Stress leads to cognitive distraction of a driver which signif-
icantly impacts his concentration and affects driving behavior.
Our next objective is to predict the driving behavior from the
stress level of a driver. For this purpose, we first define a
quantitative measure of the driving behavior, and then develop
a model to predict the driving behavior score from the stress
level by establishing a causal relationship between the two.

A. Driving Behavior Score

We quantify the driving behavior of a driver from the
recorded sensor data and assign a driving behavior score. We
concentrate on the following three aspects while quantifying
driving behavior.
Speed Profile: All the countries have statutory speed limits
(L) with an allowable tolerance (T ) defined for cars plying on
different types of roads [34]. For instance, in United Kingdom,
the speed limit is 48, 96 and 112kmph respectively for built-
up areas, single-carriageways, and motorways with a tolerance
level of 10%. In our scoring, we apply the country-specific
speed limits and the tolerance level to categorize the vehicle
speed s, obtained from the GPS sensor, into one of the three
classes – safe, moderate and dangerous. The speed profiling
score (V) is computed as follows.

V =


0, s < L (safe)
(s - L)/T , L ≤ s < (L+ T ) (moderate)
1, s ≥ (L+ T ) (dangerous)

Interaction with PoCs: Driving behavior can be assessed
by observing driver’s interaction with speed breakers and pot-
holes; sudden and sharp jerk indicates careless and abnormal
driving. We detect a speed breaker from acceleration signals by
implementing the standard machine learning techniques [25].
In order to detect a pothole, we implement the algorithm
proposed in Wolverine [35]. Once we detect a speed breaker or
a pothole, we measure jerk as the rate of change in acceleration
along the z-axis, calculated as J = da(t)/d(t) (where a(t)
is the acceleration at time t along the z-axis of the sample).
We designate the driving as abnormal if the calculated jerk
qualifies as critical jerk [36]. We assign the interaction with
PoC score I as 1 if the jerk is critical (J ≤ −9.9m/s3) and
0 otherwise;
Dangerous Maneuvers: We extract six types of dangerous
maneuvers based on [16] to determine the driving score – (a)
Weaving: repeated lane changing at high speed, (b) Swerving:
change direction abruptly, (c) Side-slipping: deviating from
the proper driving direction, (d) Fast U-turn: suddenly taking
a U-turn, (e) Sharp turn and (f) Sudden brake. The method
in [16] extracts unique signatures of these maneuvers from
the acceleration and orientation data and then computes a
set of features. The authors have used both SVM and NN
based techniques . The results of both the techniques were
more or less similar, and hence, we employ the SVM based
technique for our analysis. We implement an SVM (with 16
features, which are statistical and mathematical derivations of

TABLE V
ACCURACY IN ASSIGNING SCORES (NA - BEHAVIOR WASN’T

OBSERVED)

Scenario P R AUC P R AUC
in-house Dataset UAH-Driveset

Speed Profiling 0.98 1.00 0.98 0.98 1.00 0.98
PoC Interaction 0.93 0.92 0.87 0.94 0.94 0.88
Weaving 0.97 0.93 0.92 0.92 0.95 0.89
Swerving 0.95 0.97 0.88 0.93 0.93 0.90
Side-slipping 0.97 0.97 0.91 0.96 0.97 0.94
Fast U-Turn 0.91 0.91 0.89 NA NA NA
Sharp Turn 0.98 0.91 0.91 0.95 0.91 0.85
Sudden Brake 0.94 0.97 0.87 0.96 0.93 0.85

the acceleration and orientation values in different axes, as
given in [16]) to detect if a dangerous maneuver has occurred.
This model yields a tuple M of size six to store the score
for each of the detected maneuvers. A score of 1 is assigned
if a particular maneuver occurs in a sample window and 0
otherwise.
Overall Score: We calculate the overall driving behavior score
as follows, considering that all the aforementioned aspects
exhibit equal importance on the driver’s driving behavior.

D =
1

8

∑(
V + I +

6∑
i=1

Mi

)
(1)

Evidently, we assign a low score for the smooth driving and
high score for the aggressive driving behavior.

We validate the overall driving behavior score D by indi-
vidually evaluating each of the aforesaid three aspects V , I
and M. For speed profiling, we evaluate whether our score
properly detects the speed violations, depending on the country
and the road type. In order to evaluate the interaction with
PoCs (speed-breakers, potholes), we first check (a) if the
landmarks are detected correctly, and subsequently validate
(b) if the critical jerks are also correctly classified. Finally,
we evaluate the correctness of identifying the dangerous
maneuvers. We perform the evaluation experiments on both
the datasets. The UAH-DriveSet provides files enumerating
driver over-speeding, weaving, sudden brakes, etc as ground
truth. For in-house dataset, we rely on the captured video
clips to tag the ground truth information. Table V exhibits
the evaluation results in terms of precision (P), recall (R) and
the AUC metrics for all the three aspects. This is comforting
for us to observe that the computed score is able to capture
the diverse driving behaviors efficiently.

B. Correlating Driver Stress and Driving Behavior

We leverage on Kendall’s tau coefficient [37] to conduct the
correlation analysis of driver stress and driving behavior. In
order to calculate the coefficient, we first compute the concor-
dant and discordant pairs. A pair of observations (Si,Di) and
(Sj ,Dj) are concordant if Si > Sj & Di > Dj or Si < Sj &
Di < Dj . In the same vein, the pairs are said to be discordant
if Si > Sj & Di < Dj or Si < Sj & Di > Dj . Kendall’s tau
coefficient is calculated as τ = nc−nd

n(n−1)/2 , where, nc and nd
are the number of concordant and discordant pairs respectively
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Fig. 7. Kendall’s tau coeff. between stress and driving behavior

in the dataset, and n is the total number of samples. We obtain
the mean correlation coefficient τ as 0.83 between driver stress
S and driving behavior D for all the drivers in both the datasets
(with p-value 2.99x10−10). Moreover, Fig. 7 depicts the high
coefficient τ for each individual driver (with p-values in the
order of 10−10). Once we demonstrate the correlation, we next
aim to establish the causal relationship between the stress and
the driving behavior.

C. Causality Analysis

We apply the standard causal inference techniques [38] to
investigate the causal relationship between the driver stress and
the driving behavior. We define driver stress S as the treatment
variable (considered as intervention) and the driving behavior
score D as the response to the treatment. In order to claim that
S influences D, (a) S should always precede D and (b) there
should be no other variable Z which could be a possible cause
for D; Z is known as the confounding variable. Since driver
stress results in the driving behavior, hence trivially S always
precedes D. We now concentrate on the candidate confounding
variables and demonstrate their impact on D.

1) Confounding Variables: By definition [39], confound-
ing variables should impact both treatment variable (stress)
and response variable (driving behavior). We identify four
candidate confounding variables Z which can be measured
from our dataset.
Weather condition (W): We invoke the OpenWeatherMap
Weather API [40] to get the weather information at the time
of data collection. We provide scores for rainfall volume,
temperature, snow and wind-speed on a three-point scale (0
as low and 2 as high). For instance, considering India, rainfall
of < 5mm is considered low, > 5mm and < 10mm is
considered moderate and > 10mm is considered high [41].
The final score is computed as the aggregated sum of all the
four scores.
Previous driving score (P): The last driving behavior some-
times impacts the driver’s current behavior. We obtain the
score from the previous D and consider it as a confounding
variable.
Day of the week (Q): Whether the driver is driving on a
weekday or weekend might impact his driving behavior. A
score of 0 is assigned for a weekday and 1 for the weekend.
Special occasion (O): We capture if the driving was on a
special occasion such as holidays, strikes, festivals etc. Any
of the special occasion days are scored as 1; otherwise, we

score it as 0.

TABLE VI
KENDALL’S TAU FOR CONFOUNDING VARIABLES

Z W P Q O
τ 0.68 0.56 0.18 0.23

In Table VI, we compute Kendall’s tau coefficient concern-
ing the driving behavior D for all the candidate confounding
variables Z. We observe that variables such as day of the
week and special occasion exhibit low correlation. Hence, we
eliminate Q and O from the candidate confounding set Z and
perform the following causality inference only on the weather
condition (W) and previous driving score (P) along with the
driver stress (S).

2) Causal Inference: The intuition behind defining a
causal relationship between the treatment (say, stress S) and
the response (say, driving behavior D) variables is that a small
change in the treatment variable would cause a significant
change in the response variable, whereas no significant change
in the response would be observed on changing the confound-
ing variables Z [42]. This expected change in response variable
is conceptualized as the average treatment effect (ATE).
However, in order to observe the impact on the response
variable, we need the response data both in case (a) when the
treatment was performed, and (b) when the treatment was not
performed; these are called as matching pairs to remove bias
in observational studies [43]. In order to obtain the matching
pairs, we identify two drivers (say, u and v) who have similar
trip information, but one of them has high stress score (say,
S(u)) while the other one has a low score (say, S(v)). This
creates a synthetic scenario to obtain the matching pairs, which
provide us the responses for both the treatment and the no-
treatment cases. Once the set of matching scenarios (P) are
generated, we compute the average treatment effect [38] as,

ATE = E
(D(u)− D(v)
X(u)− X(v)

)
(u,v)∈P

(2)

where E(.) is the expectation, u and v are matching pairs in
P and X = S∪Z. The high value of ATE indicates X (which
can be the treatment variable S or the confounding variables
Z) causes driving behavior D.

TABLE VII
ATE OVER D W.R.T TREATMENT S, W, P

Variable S W P
ATE 0.62 0.23 0.21

Table VII displays the average treatment effect (ATE)
for the treatment variable (driver stress S) as well as the
confounding variables (weather condition W and previous
driving score P). Evidently, stress S demonstrates a significant
and positive causal impact on the driving behavior D. Notably,
the low but positive ATE of W and P exhibit their mild
impact on D. However, stress exerts a major influence on the



deterioration of the driving score, overshadowing the identified
confounding variables.

It is also possible to assert that stress can be caused due
to driving behavior, thus turning D as the treatment and S as
the response. But, we cannot calculate the driving behavior
unless this action has happened. However, we can calculate
stress from historical information as we observed in §V.
So, effectively, this analysis would help us to establish a
relationship to predict the driving behavior, which would
otherwise won’t be possible, from the stress profile of a driver.
We do not have such a motivation to perform causal analysis
the other way round.

D. Model Development: Driving Score Prediction

Finally, we develop a simple machine learning based model
to predict the driving behavior score from the driver stress. The
model is constructed considering the driver stress level as a
single feature. We implement the model following state of the
art machine learning algorithms, viz. Simple Linear Regression
(based on the least square technique [44]), Linear Support
Vector Regression (SVR), SVR with Radial Bias Function
(RBF) Kernel) and Decision Tree Regression. We evaluate the
model on the UAH-DriveSet and the in-house dataset. We
obtain the ground truth driving scores of the drivers from the
methodology described in §VI-A. During the evaluation, we
split the dataset into the ratio of 80% (to train the model)
and 20% (for testing); we perform 5-fold cross-validation and
report the results in terms of Mean Square Error (MSE), Mean
Absolute Error (MAE) and R2 score.

We develop a baseline model to demonstrate the elegance
of the proposed model in capturing the personality trait. It
has been shown qualitatively that an increase in driver stress
would deteriorate his driving behavior [5]. Following this idea,
we develop a simple linear model as the baseline for driving
score prediction. We consider the equation of the linear model
as y = mx where y is the driving behavior and x is the driver
stress, assuming no intercept. We vary the angle θ, that the
line makes with the x-axis, from 0◦ to 89◦ (the line should
always lie in the first quadrant) and compute the value of
m = tanθ for which we got the best result. On running the
baseline model on the in-house dataset, the best result was
obtained for θ = 32◦ which we use to calculate m.
Performance Evaluation: Table VIII illustrates the driving

TABLE VIII
REGRESSION TECHNIQUES COMPARISON

Technique Metrics
MSE MAE R2

Simple Linear Regression 0.0103 0.0771 0.8123
Linear SVR 0.0128 0.0971 0.7184
SVR (RBF kernel) 0.0131 0.0985 0.7118
Decision Tree Regression 0.0110 0.0826 0.7861

score prediction results across different machine learning
algorithms for the in-house dataset. Apart from the low MSE,
low MAE and high R2 score, which show the elegance of
our model, we note that simple linear regression performs best

out of the four machine learning techniques. This is possibly
because of the high correlation between driver stress and driv-
ing behavior score which could easily be put into the simple
linear regression equation. Hence, we implement the simple
linear regression to report the subsequent results. In Table IX
we exhibit the model performance for the two datasets. The
high accuracy of the proposed model can be attributed to the
efficient personalized stress computation. Consequently, this
model could efficiently learn in what range the driving score
of a particular driver varies with the change in the stress level
and predict it accordingly. Finally, Tables IX also shows the
results of the baseline model which gives significantly poor
results when compared to the proposed model. A negative R2

score implies that the fit of the baseline model is poor than a
horizontal line. This can be attributed to the fact that the impact
of personality traits has not been considered in the baseline
model. The assumption that an increase in stress would always
deteriorate the driving performance may not hold true for
all the drivers. Hence, the linear model [5] performs poorly
as it cannot capture such variations. On the other hand, in
our model, when the training is done on the driver data, the
personality traits have already been incorporated in the driver
stress score; accordingly, the correct driving behavior score
can be predicted.

TABLE IX
METRICS TO EVALUATE THE MODEL

Dataset Metrics (Proposed Model) Metrics (Linear Baseline)
MSE MAE R2 MSE MAE R2

in-house 0.0103 0.0771 0.8123 0.376 0.611 -0.05
UAH-DriveSet 0.0105 0.07 0.8571 0.326 0.563 -0.04

VII. ONLINE TRIP RECOMMENDATION

Finally, we leverage on the driver stress computation model
as well as the driving score prediction model to develop a
system which can recommend a driver whether he should take
or skip the next trip. Naively, if the new trip causes high
stress to a driver, then that trip shouldn’t be recommended.
However, it is important to note that some of the drivers are
capable to handle high stress efficiently, hence the decision
can not be taken only considering driver stress. Thus, we
first compute the stress level of a driver using the historic
trip information fed into the stress model, and next we use
the prediction model (§VI-D) to estimate the driver’s driving
behavior score for the next trip. If the score is above a
threshold, we recommend the driver to skip the trip. We
keep the threshold as a configurable parameter, which can
be fixed by various cab companies depending on the adopted
policy for the companies and the corresponding country or
city regulations. For instance, the model could be lenient
for a new driver, and hence the threshold would be high.
Similarly, some cab firms may require their drivers to atleast
complete five trips in a day (for example, the payment boost
for Uber[45] based on minimum trip requirements)Thus, the
recommendation could start only after the fifth trip.



A. Evaluation

We have shared the trip recommendation system (an An-
droid application based on smartphones) with the 7 drivers of
the in-house cab company and recorded the results for a week.
Whenever a ride was sent to a driver, the ride details were fed
to the system. The recommendation system decided whether
the driver should take a ride or skip and the information is
flashed on the driver’s phone. In our experiments, we start
recommending only after the third trip and fix the driving
behavior score threshold to 0.6.
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Fig. 8. (a) Average D on accepting or rejecting a recommendation. (b) D as
a driver rejects one or more recommendations.

Benefit of the trip recommendation system is evident from
Fig. 8(a). All drivers observe gain accepting recommendation,
which gets reflected from the drop in driving scores. Notably,
Driver D2 and D6 observe high gain, while it is marginal for
driver D5. We observe that driver D5 inherently drives poorly,
so the recommendation has marginal effect on him. Moreover,
Fig. 8(b) shows that driving score increases (deteriorates)
when driver starts rejecting multiple recommendations.
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Fig. 9. Avg. % change in dT and night trips when a recommendation is
followed
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Fig. 10. (a) Avg. % change in nT when following recommendation. (b) Avg.
D when ignoring recommendation w.r.t. a feature.

Does the recommendation affect a driver’s overall income?
One primary concern of the proposed trip recommendation is

that it may compromise with the driver’s income based on the
incentive parameters set by the cab company. We surveyed the
drivers and noted that the income is primarily based on the
number of trips, distance covered and number of night trips
conducted by the drivers. We examine how the acceptance
of a recommendation affects these aspects. Fig. 9(a) shows
the change in distance covered by the drivers on following the
recommendations. We observe that the change is less than 25%
for all the drivers. Also most of these changes are in positive
axis which rather increases the income. This increase can be
linked to the decrease in trips more prominent in other features
which affects his stress and hence increase in distance covered.
A similar trend is observed for number of night trips (Fig. 9(b)
and the total number of trips (Fig. 10(a)) also. Such small
change in parameters should not adversely affect the driver’s
income, but maintains a fair balance between driving safety
and driver’s incentives. However, 20% change in the negative
axis for D2 (Fig. 9(b) and Fig. 10(a)) and D4 (Fig. 9(a))
would seem a major setback for them, but this was expected as
safety was the primary concern. D2 & D4 exhibit poor driving
behavior, while taking more number of trips (especially night
trips) and more long trips respectively. Finally, in Fig. 10(b) we
observe that neglecting the recommendation linked to travel
distance (dT ) heavily degrades the driving score. This result
also supports the fact observed from Fig.6, where most of
the drivers are most stressed by long trips. In a nutshell,
we observe that the proposed recommendation system can
promote safe driving by balancing the requirements of a driver,
a passenger as well as the cab company.

VIII. CONCLUSION

With gaining popularity of cab-sharing services and the
increasing risk-taking attitude of drivers to boost income,
a low-cost and easy deployable solution for enforcing safe
driving practice has become inevitable. In this paper, we have
used historical driving data to develop a personalized model
to assess driver’s stress from his past driving attributes and
trip history. Subsequently, we quantify driving behavior from
recorded sensor data. We established a causal relationship
between driver stress and driving behavior, which helped us
to develop a simple model to predict driving behavior from
stress. Leveraging on the stress computation and prediction
model, we developed an online trip recommendation system.
However, the system could have a plethora of applications. (a)
The system can take into account how much driving stress a
driver can handle and design a full day roster. (b) To improve
driver quality, the system can award drivers who cope better
in high stress scenarios. (c) Fleet managers could also use our
system to recruit drivers who are on probation.

Although the model has shown high accuracy in quantifying
driver stress, there are some confounding variables which
are out of our hands and could result in model failure. For
instance a driver, who recently faced an accident might get
stressed much earlier than expected by the model. We assert
that such confounding variables are usually active only for
short duration; their role gets disappeared quickly with time.
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