
UrbanEye: An Outdoor Localization System for

Public Transport

Rohit Verma∗, Aviral Shrivastava∗, Bivas Mitra∗, Sujoy Saha‡,

Niloy Ganguly∗, Subrata Nandi†, Sandip Chakraborty∗

∗Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, INDIA 721302
‡Department of Computer Application, National Institute of Technology Durgapur, INDIA 713209

†Department of Computer Science and Engineering, National Institute of Technology Durgapur, INDIA 713209

Email: rohitverma.kgp@gmail.com, aviralshrivastava93@gmail.com, bivas@cse.iitkgp.ernet.in, sujoy.ju@gmail.com,

niloy@cse.iitkgp.ernet.in, subrata.nandi@gmail.com, sandipc@cse.iitkgp.ernet.in

Abstract—Public transport in suburban cities (covers 80% of
the urban landscape) of developing regions suffer from the lack of
information in Google Transit, unpredictable travel times, chaotic
schedules, absence of information board inside the vehicle. Con-
sequently, passengers suffer from lack of information about the
exact location where the bus is at present as well as the estimated
time to be taken to reach the desired destination. We find that off-
the-shelf deployment of existing (non-GPS) localization schemes
exhibit high error due to sparsity of stable and structured outdoor
landmarks (anchor points). Through rigorous experiments con-
ducted over a month however, we realize that there are a certain
class of volatile landmarks which may be useful in developing
efficient localization scheme. Consequently, in this paper, we
design a novel generalized energy-efficient outdoor localization
scheme - UrbanEye, which efficiently combines the volatile and
non-volatile landmarks using a specialized data structure, the
probabilistic timed automata. UrbanEye uses speed-breakers,
turns and stops as landmarks, estimates the travel time with
a mean accuracy of ±2.5 mins and produces a mean localization
accuracy of 50 m. Results from several runs taken in two cities,
Durgapur and Kharagpur, reveal that UrbanEye provides more
than 50% better localization accuracy compared to the existing
system Dejavu [1], and consumes significantly less energy.

Index Terms—Navigation; Localization; Public Transport

I. INTRODUCTION

Alice during her visit to Durgapur wants to travel to the city

museum from her hotel using city bus. But Alice is surprised

to find that there is hardly any information about the public

bus routes, schedules, fares, travel time estimates available in

Google Transit system for Durgapur. Through enquiry she

locates the nearby bus stoppage; however, she cannot find

any stoppage sign around and certainly no information display

board. On boarding a bus, much to her amazement she finds

that even the bus itself does not have any electronic informa-

tion system. She remains anxious throughout her trip about

the timing to get down, as she cannot afford to continuously

use energy hungry GPS navigation. Alice notices that the bus

skips few stops to reach a particular busy stop before another

bus to ensure that it picks up a larger pool of passengers.

Finally, she reaches her destination, the travel time overshoots

by 30% than expected and is barely able to get out with the

help of a friendly commuter. Being frustrated by the hassles,

on her way back to hotel Alice decides to pay 10 times more

to hire a cab.

The above scenario though imaginary unfortunately repre-

sents the state of public transport in various suburban cities of

developing countries (India is a glaring example [2]). Here

a major bulk of the public transport is provided via the

buses run by multiple private owners. As a result, unhealthy

competition, unplanned traffic and poor infrastructure lead

to chaotic stoppage patterns [3], schedules and unpredictable

speed variations, thus causing extreme inconvenience to com-

muters and visitors alike. A simple help in this context would

be to provide travelers with a mobile app which will act

as a virtual electronic board to trace the bus route and to

locate destination - the facility bus should otherwise have

provided. GPS assistance may be a trivial solution, however

that may prove extremely energy inefficient. In this paper, we

take a deeper look into the underlying technical challenges

in developing an energy efficient navigation system to assist

people like Alice navigate smartly while onboard a public bus.

The basic outline of a general navigation system would

be to identify landmarks using the sensors present in the

mobile phones and localize the route using the landmarks as

checkpoints. There exist several inertial navigation systems

(INS) specially catering to cars/cabs [1], [4], bus [5], [6],

underground metro [7], [8], pedestrians [9]–[11]. A recent

navigation system Dejavu [1], experimented on the roads of

Alexandria, Egypt specifically identifies landmarks and local-

ize a route accordingly. However, when Dejavu is tested on bus

routes in Durgapur and Kharagpur, it shows a mean deviation

greater than 120m. Certainly, the result is not acceptable

for implementing any practical location-based services. The

fundamental reason behind the poor performance of Dejavu

lies in its landmark fixing schemes - it mostly relies on the

presence and identification of the virtual landmarks (landmarks

specified by the presence of certain Wi-Fi zone and the area

where GSM handover occurs) along with a variety of physical

landmarks. However, our feasibility experiments (in the next

section) illustrates the fact that, in one hand identifying virtual

landmarks is a major challenge, on the other hand some of the

physical landmarks are volatile in nature. Unlike few physical

landmarks such as turn and speed breaker, landmarks such

as bus stops are indeed volatile; buses occasionally skip the

designated stop.

IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications

978-1-4673-9953-1/16/$31.00 ©2016 IEEE

In this paper, we develop UrbanEye, an energy-efficient

outdoor localization system for route navigation and travel

time prediction for the city commuters (§III to §V). Our

extensive feasibility study uncovers the failure of the virtual

landmarks (Wi-Fi signal strength, GSM handoff) in the local-

ization process (§II). Consequently, the core of the system

is based on a novel framework for accurately identifying

both volatile and non-volatile physical landmarks. In order to

handle the uncertainty of the volatile landmarks and process

navigation queries, we introduce a specialized probabilistic

timed automata (PTA) [12] (§IV). Extensive experimentation

at two different cities reveal that UrbanEye provides more

than 50% better accuracy compared to the existing outdoor

localization system, Dejavu, while consuming substantially

less amount of energy. Moreover, UrbanEye surprisingly gives

a little better estimate of travel time compared to popular vis-

a-vis power hungry Google map service (§VI).

II. FEASIBILITY STUDY

The main motivation of this work arises due to the fact that

the existing state-of-the-art algorithm on outdoor localization

and navigation performs poorly while applied in public buses

in aforesaid cities. A possible reason behind such performance

can be improper detection of underlying landmarks (anchor-

points). Hence we launch an extensive study to assess the

feasibility of using various types of landmarks - we consider

physical landmarks (turns, speed breakers and bus-stops) and

virtual landmarks (Wi-Fi hotspots, GSM handoffs).

Experiment: Volunteers traveled in buses conducting war

driving on one route each in Durgapur and Kharagpur carrying

five different types of smart-phones. They conducted the

experiment for a month (60 trails each covering around 75
Kms across two cities). From the sensor trails signatures cor-

responding to different landmarks are extracted for analysis.

Observation: We found the turns and speed-breakers are

detected with nearly 100% accuracy, hence they are considered

to be non-volatile landmarks. However, in few occasions,

the sensory signature obtained when the bus was overtaking

another vehicle is exactly like a turn. Similarly, on some

occasions, potholes are falsely identified as speed breakers,

however the buses normally try to avoid them. Some other

interesting observations are as following:

L
o

n
g

it
u

d
e

Latitude

(a) Wi-Fi APs Down Trail

Down Trip (Scale: 1cm = 1km)
Device-1
Device-2

L
o

n
g

it
u

d
e

Latitude

(b) Wi-Fi APs Up Trail

Up Trip (Scale: 1cm = 1km)
Device-1
Device-2

Fig. 1: Bus trail of a route in Durgapur and the positions where

Wi-Fi hotspots are detected by different devices

Wi-Fi: Fig. 1(a) and Fig. 1(b) respectively show a repre-

sentative plot of detected Wi-Fi signals along up and down

trails on a schematic 2-D map (the trail is of a particular bus

route in Durgapur). It can be observed that the availability of

Wi-Fis is very sparse along a route, also the Wi-Fi hotspot

observed by the two different devices are mostly not in the

same place, making Wi-Fi hotspot an unreliable landmark

to consider. We also found on three occasions (out of 60)
users boarded the bus with their Wi-Fi hotspot enabled which

completely disturbed the Wi-Fi spot identification process. We

calculated the correlation between the locations of the detected

hotspots by two different devices on same trips, which is 0.35
for the down trip and 0.11 for the up trip respectively. Also

the correlation of the detection by the same device calculated

over all (up and down) trips are 0.27 and 0.11 respectively for

Device-1 and Device-2.

L
o

n
g

it
u

d
e

Latitude

(a) GSM Hand-offs Down Trail

Down Trip (Scale: 1cm = 1km)
GSM Handoff 16thmay
GSM Handoff 19thmay

L
o

n
g

it
u

d
e

Latitude

(b) GSM Hand-offs Up Trail

Up Trip (Scale: 1cm = 1km)
GSM Handoff 16thmay
GSM Handoff 19thmay

Fig. 2: Bus trail of a route in Durgapur and the positions where

GSM handoffs are experienced in two different days

GSM handoff: Fig. 2(a) and Fig. 2(b) respectively show

a representative plot of detected GSM handoffs along up and

down trails (same bus route as previous case) on a schematic

2-D map on two different days. Similar to Wi-Fi hotspots, it

is seen that the positions, where GSM hand-off occurs, differ

from day to day. GSM hand-offs too show low correlation even

when calculated over the same network. We have calculated

the correlation between the place detected for hand-offs by the

same device with same network provider on the same route

on different days. This value is 0.08 for the down trip and

0.35 for the up trip. The difference occurs not only due to

varying weather conditions but we believe due to unplanned

installation of cell towers, thus handoffs occur under a region

and not at a specific point as signal strength of towers vary.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o

n
fi

d
e
n

c
e

Fraction of Stops

(a) Cumulative Freq. of Stops

All
w.r.t Timezones

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
is

ta
n

c
e
 (

m
)

Fraction of Landmarks

(b) Cumulative Freq. of Inter-Landmark Distance

All Landmarks
Stops
Turns

Speed Breakers

 0
 10
 20
 30
 40
 50
 60
 70
 80

A B C D E

Fig. 3: (a) Cumulative fraction of stops w.r.t. confidence

(Inset: Percentage of stops detected by different devices),

(b) Cumulative fraction of landmarks (speed breakers, turns,

stops) available at a given distance

Stops: A point (x, y) in Fig. 3(a) represents the fraction of

stops (x) that has appeared in y-fraction of trails or more. The

‘red (lower)’ curve is drawn considering all possible trails,

whereas we bin the trails into four bins according to the time

of the day. For each stop, we take the highest fraction among

the bins and plot the ‘blue’ curve. The ‘red’ curve shows that

in general a good fraction (40%) of bus stops are detected with

fair (0.6) degree of confidence. The ’blue’ curve shows that

if the time of travel is known, the overall detection accuracy

improves significantly, say, 70% detected with 0.6 confidence.

It is because a bus occasionally skips some designated stops

depending on a particular time of the day (non-busy hours).

Hence stoppage patterns of buses has strong temporal features.

Fig. 3(a) inset shows that the accuracy in detecting a bus stop

is almost independent of the quality of the smart-phone sensors

used (A (Xiaomi Mi4i), B(Moto G2), C(Google Nexus7), D

(OnePlusOne), E(Yureka)).

Lessons learned: Road-side Wi-Fis and GSM handoffs

show very high degree of unreliability, hence cannot be used as

landmarks for outdoor localization. Stops though volatile show

certain patterns. Turns and speed-breakers are always recog-

nized but there are certain amount of false positives present.

Fig. 3(b) shows that the distance in-between two bus stops

is the least. Hence, although volatile, using the information of

stops can significantly increase the density of landmarks which

is a primary requirement for designing accurate localization

scheme. Fig. 3(b) also shows that the mean distance between

any two landmarks is reduced drastically (almost 500m) with

the inclusion of stops. So the challenges are to design a novel

efficient model to represent and utilize both the volatile and

non-volatile landmark information and minimize (eliminate)

the cases of false detection of landmarks.

III. SYSTEM OVERVIEW

The general framework of UrbanEye has two broad modules

– (1) creation of landmark database through war-driving, and

(2) processing of database and on-line navigation.

A. Creation of Landmark Database

As mentioned earlier, we consider two types of landmarks

- volatile (stops) and non-volatile (speed breakers and turns).

Each landmark is essentially a signature which is computed

from the smart-phone sensor readings. We use three primary

sensors for landmark detection - accelerometer, gyroscope

and compass. UrbanEye maintains a landmark database for

storing and maintaining landmark information over different

bus routes, as collected through war-driving. During war-

driving, we collect the landmark position information via GPS,

and store it in a landmark database server. It can be noted that

the position is an one time information which is collected

for localizing the bus position during navigation. Apart from

the position information, we collect sensor signatures for a

landmark, time zone when the landmark is detected and mean

and deviation of travel time between two landmarks.

B. Processing of Landmark Database and On-line Navigation

Due to multiple bus routes in a city, the size of the landmark

database may be very large, although we have to process it in

Fig. 4: UrbanEye Architecture with three design components

real time. For this purpose we require an efficient data structure

to pre-process and store the information in a format which can

be useful for fast processing of navigation queries. Because

of the volatility in the system, the navigation queries require

complex probabilistic processing to find out the probable

location of the user and the travel time to the destination

(TTD). We use PTA to process the landmark information and

to execute navigation queries. PTA combines the temporal as

well as the probabilistic nature of the transition between two

states, that make it a suitable data structure for our system.

In UrbanEye, the user fixes the {source, destination} pair,

and the server generates a PTA of the bus routes between

the specified source and destination bus-stops. The navigation

module enumerates the PTA on detection of a landmark, and

finds out the position of the bus over the route. We apply

Vincenty’s formula [13] to approximate the location of a bus

based on the previous landmark detected. Furthermore, the

TTD is adjusted on-the-fly based on the running statistics of

the bus and the historical statistics available with the PTA.

During on-line navigation, the user also contributes in updating

few information in the landmark database, like the mean travel

time between two landmarks, and the landmark confidence

values.

Fig. 4 shows the general architecture of UrbanEye system.

It has three primary components - landmark database creation

from war-driving, generation of the PTA from the landmark

database, and on-line navigation. The detailed design of the

system has been discussed in the subsequent sections.

IV. URBANEYE: LANDMARK DETECTION AND

PROCESSING OF LANDMARK DATABASE

In this section, we discuss the procedures for landmark

detection, landmark database creation and formation of PTA

from the landmark database.

A. Landmark Detection

We use three primary sensor readings for landmark de-

tection - accelerometer, gyroscope and compass. The system

computes direction from compass, and the linear acceleration

is internally computed by accelerometer and gyroscope. In a

global axis space, we assume that the bus moves at the Y-axis

direction, and the vertical axis is the Z-axis. Based on the

sensor readings across different axes, the detection of turns,

speed breaks and stops works as follows.

-30

-20

-10

 0

 10

 20

 30

 0 10 20 30 40 50 60 70 80

C
o

m
p

a
s
s
 r

e
a
d

in
g

 a
lo

n
g

 X
-a

x
is

Sample Readings (w.r.t Time)

(a) Normal vs Turn

Turn
Normal

-4

-2

 0

 2

 4

 6

 8

 0 5 10 15 20 25
A

c
c
e
le

ra
ti

o
n

 a
lo

n
g

 Z
-a

x
is

Sample Readings (w.r.t Time)

(b) Normal vs Speed Breaker

Speed Breakers
Normal

-4

-2

 0

 2

 4

 6

 8

 0 5 10 15 20 25

A
c
c
e
le

ra
ti

o
n

 a
lo

n
g

 Z
-a

x
is

Sample Readings (w.r.t Time)

(b) Normal vs Stop (Z-axis)

Stops
Normal

-4

-2

 0

 2

 4

 6

 8

 0 5 10 15 20 25

A
c
c
e
le

ra
ti

o
n

 a
lo

n
g

 Y
-a

x
is

Sample Readings (w.r.t Time)

(d) Normal vs Stop (Y-axis)

Stops
Normal

Fig. 5: Detection of Landmarks from Sensor Readings

1) Turns: We observe that very high variance for the X-

axis reading of the compass signifies a turn. Fig. 5(a) shows

a comparison between compass reading for a turn and the

normal movement of the bus. Starting from the initial readings,

the compass trace is processed in form of sub-traces where the

duration of every sub-trace is L seconds. Suppose CX
0 and CX

L

are the compass readings along the X-axis at the beginning

and at the end of a sub-trace, respectively. TC is the compass

reading threshold for detecting a turn. The system detects a

turn if |CX
L

− CX
0 | > TC and

CX

L

CX

0

< 0.

2) Speed Breakers: Speed breakers are also non-volatile

landmarks that show a peak in the acceleration value and high

variance at Z-axis. Fig 5(b) shows a comparison between linear

acceleration for a speed breaker and that during the normal

movement. Similar to the previous case, the accelerometer

trace is divided into continuous sub-traces of length L. Let AZ
p

and AZ
n be the accelerometer peaks at positive and negative Z-

axis directions, respectively. Then a speed breaker is detected

if |AZ
p −AZ

n | ≥ TA, where TA is the accelerometer threshold

for detecting a speed breaker.

3) Stops: Stops are the volatile landmarks and most chaotic

of all. We make use of the linear acceleration values in the Y-

axis and Z-axis for detecting the stops. Fig. 5(c) and Fig. 5(d)

show a comparison between linear acceleration for a stop and

that during the normal movement, across Y-axis and Z-axis.

When there is a stop, the linear acceleration value in the Y-

axis goes near to zero, and the Z-axis shows little deviation

near zero (because of the bus vibration). These signatures help

us to detect a stop.

Let there be n entries in the acceleration sub-trace, and AY
i

and AZ
i be the ith entry in the linear acceleration values across

Y-axis and Z-axis, respectively. The system detects a stop if

AY
i ≈ 0; 0 < AZ

i < 1, ∀ i ∈ [1, n].
4) Setting the Parameters TC , TA and L: The impact of

TC , TA and L on the detection of turns and speed breakers

is shown in Table I where the table values show the accuracy

TABLE I: Threshold calculation

L (Sec)
Detection % For Different Threshold Used
Turns (TC) Breaker (TA)

10 20 25 30 3 4 5

2 0 9.38 40.63 65.63 33.33 44.44 33.33

3 3.13 43.75 59.38 96.8 88.89 77.78 44.44

4 21.88 56.25 65.63 87.5 88.89 77.78 33.33

5 31.25 62.5 71.88 81.25 77.78 77.78 44.44

for a particular landmark detection. Each value is an average

of all the instances of that event observed during war-driving.

The table indicates that at TC = 30 and L = 3sec, turn is most

accurately detected, whereas speed breakers can be detected

best at TA = 3 and L = 3sec. Therefore, we use these values

of thresholds in UrbanEye.

5) Initial Axis Orientation for Sensor Measurement: In

a global axis space, we assume that the bus moves in the

Y-axis, with other axes accordingly oriented. However the

orientation of the smart-phone and that of the bus may not be

in sync. We resolve this problem by taking the components of

gravity into consideration. We observed that, whatever be the

orientation, the axis which has the component of gravity in the

acceleration value, has a mean value close to the “acceleration

due to gravity” (usually around 9.5m/s2). Considering this

observation, we decide the Z-axis from the acceleration data

of the user traces.

B. Creation of Landmark Database

The landmark database is created based on the sensory

detection of different landmarks through war-driving. During

war-driving, we collect the landmark position information

via GPS, and store this in a landmark database server. The

database stores the following information about a landmark;

• landmark : The actual landmark.

• landmark-from : The landmark from which this land-

mark was reached.

• position : The position of the landmark, obtained

through war-driving.

• time-zone :We follow a simple rule of dividing the day

into four time-zones of six hours each. This information

is required to capture the temporal behavior of volatile

bus-stops.

• tt-mean : The mean travel time between two consecu-

tive landmarks detected in a trail during war-driving. This

is computed as the mean of multiple trail collections.

• tt-sd : This field stores the standard deviation of the

travel time between two consecutive landmarks detected

during war-driving over the multiple trails.

• confidence : This parameter keeps track of the detec-

tion probability of a volatile landmark. The confidence is

defined as a conditional probability P(li|lj) that denotes
the probability of detecting landmark li, given that the

previous landmark detected was lj . Numerically, this is

computed as P(li|lj) = P(li ∧ lj)/P(lj). From the war-

driving trails, we compute the instances when both li and
lj are detected as successive landmarks (n(li ∧ lj)), and

the instances when only lj is detected (n(lj)). Let nt be

the total number of trails. Then,

P(li ∧ lj) =
n(li ∧ lj)

nt

; P(lj) =
n(lj)

nt

It can be noted that although the initial database information

is generated via war-driving, every detection of a landmark

during the application usage also updates the database if there

is at-least 5% change in a parameter. This is required to capture

the long term effect of the landmark information changes.

C. From Landmark Database to PTA

A PTA is an automaton with a set of states and transitions

where every transition is associated with a probability and

guarded by a time value. Formally a PTA P is a six tuple

automaton, P = {S, sinit,X , inv, prob,L}, where S is a set of

states with the initial state sinit ∈ L, a finite set X of clocks, a

function inv : L → ΞX , where ΞX is a set of clock constraints

associating a time guard with each location, a finite set prob
with probabilities associated with each transitions, and a la-

beling function L → 2L. Graphically, a PTA looks like a state

transition diagram with every transition associated with three

tuples < l, g, p > where l is the input label for the transition, g
is the guard time and p is the transition probability. If there is

a transition between two states S1, S2 with this tuple defined

as < l12, g12, p12 >, then on observation of l12, the transition

is fired from S1 to S2 with probability p12, only if the elapsed

time is in-between g12 ±∆ where ∆ is a tolerance factor.

It is interesting to observe that PTA has a natural similarity

with the navigation system we are considering. The states

can be represented as different checkpoints1 over the road

and encountering a landmark may trigger a transition between

two consecutive states. However this transition occurs with

some probability (confidence) in case the subsequent land-

mark is volatile and with complete certainty for non-volatile

landmarks. Furthermore, the mean time to travel between two

successive landmarks (tt-mean) can be used as the timer

guard to avoid false transition.

Fig. 6: An example PTA of a route

An example instance of the PTA is given in Fig. 6. Let, in a

route there be sequence of landmarks {stop-1, stop-2, stop-3,
breaker}. The user boards the bus from stop-1, and initiates the

PTA from CP1. Stop being a volatile landmark, the user may

skip either or both of stop-2 and stop-3, and may directly reach

the next checkpoint of detecting a breaker. The PTA is formed

accordingly. From, CP1, we have three possible options: CP2

1The checkpoints are the positions associated with every landmark. Once we
detect a landmark, we say that the bus has reached at a particular checkpoint
on its travel route.

(detect stop-2), CP3 (skip stop-2 and detect stop-3) and CP4

(skip stop-2, stop-3 and detect the breaker).

Given a {source, destination} pair, the system builds the

PTA as follows;

• The source is taken as the first checkpoint and the initial

state whereas the destination is considered as the final

state or the ‘goal’ state of the PTA.

• Between a {source, destination} pair, the system enu-

merates all the bus routes from the landmark database,

and every landmark position is considered as a new

checkpoint.

• Between two checkpoints with non-volatile landmarks,

if there exists one or more volatile landmarks, then the

system generates all possible transitions considering that

the volatile landmarks may remain undetected, as shown

in Fig. 6.

Once we have the backbone system in hand, we proceed

for the navigation module as discussed in the next section.

V. URBANEYE: NAVIGATION AND TRAVEL TIME

ESTIMATION

The navigation is initiated by a user by specifying the

{source, destination} pair via the UrbanEye user interface.

The {source, destination} pair is forwarded to the UrbanEye

server, and the server builds the PTA and offloads it to the

user’s smart-phone.

A. On-line Localization of Bus Navigation

The detection of a bus navigation path is basically a

satisfiability problem of the PTA to match an input landmark

sequence {l1, l2, l3, ...} starting from the initial state (check-

point corresponding to the originating bus stop) to the final

state (checkpoint corresponding to the destination bus stop).

Let, after crossing checkpoint CPi (which corresponds to

landmark lk, say), the user detects another landmark lk+1 after

time τ . Due to the volatility in landmarks, there may be more

than one out-going edges from CPi. Let there be q outgoing

edges, and the checkpoints associated with those edges are

CPj1, CPj2, ..., CPjq . The system makes a transition from

CPi → CPjr; r ∈ [1...q] (CPjr is detected as the checkpoint

corresponding to landmark lk+1), if the following conditions

are satisfied;

C-I. the label of the edge CPi → CPjr is lk+1; and

C-II. gi,jr − gsdi,jr ≤ τ ≤ gi,jr + gsdi,jr, where gi,jr is the

guard interval of the edge CPi → CPjr, and gsdi,jr is the

standard deviation of the guard interval obtained from

tt-sd stored in the landmark database.

Handling sensory and environmental noise: However,

due to sensory or environmental noise, there may be error

in landmark detection. There can be two possibilities,

• The system may detect a false positive landmark due

to sensory or environmental noise (ex., a turn may be

detected due to overtaking)

• The actual travel time of the bus (τ) may significantly

differ from the mean, due to environmental noise (ex.

traffic congestion)

Significant deviation of τ from the mean travel time may result

in the triggering of a false transition in the PTA. To eliminate

such false transitions, we have to adjust the τ value based on

the observation from bus running statistics. It can be noted

that such behaviors are not regular and are outliers for the

system. Therefore, these data points should not contribute in

tt-mean, although we need to adjust τ for the detection

of the next checkpoint. As the bus velocity becomes zero at

every stop, therefore the deviation in acceleration results in

the deviation of τ value.

The acceleration deviation is not regular, and we assume that

it follows some unknown distribution with mean −1 ≪ ǫ ≪ 1.
The ǫ value is calculated from the normalized deviation in

acceleration of the target patch. Let, τadj be the adjusted travel

time and a be the average linear acceleration measured in a

patch during run-time from the accelerometer and gyroscope.

Assume that d is the distance of that target patch, which can

be computed from the position of the landmarks. As the

initial velocity is zero, we can write;

1

2
a(1 + ǫ)τ2adj − d = 0 (1)

Then with first order approximation of ǫ, τadj is obtained as,

τadj =

√

2d

a

(

1−
ǫ

2

)

(2)

We compare the value of τadj with the guard interval, as given

in condition (C-II) above, to detect a checkpoint corresponding

to a landmark. This eliminates the problem of detecting

volatile landmarks in the presence of chaotic bus movements.

Further, the guard interval also eliminates false positive land-

marks detected as a result of sensory or environmental noise.

B. Estimation of Bus Position

Whenever the bus reaches a checkpoint, the present position

of the bus is updated as the location of that checkpoint. To es-

timate the bus position between two consecutive checkpoints,

we use the Vincenty’s formula [13]. Vincenty’s formula takes

the displacement of any moving object, its bearing angle (i.e.

the orientation) and the previous position in terms of latitude

and longitude as input. In our scenario, the initial point is

the location of the last checkpoint of the bus. The bearing

angle is calculated from the sensor readings. Further, we use

the double integration approach over the acceleration readings

to calculate the distance. The Vincenty’s formula returns the

new position of the bus which is updated in UrbanEye user

interface.

Further, it is possible that the bus may skip a volatile

landmark. In such a case the bus position is readjusted on

detection of next non-volatile landmark. The in-between loca-

tion is approximated using Vincenty’s formula, as discussed

above.

C. Estimation of Expected TTD

With the localization work done, the next task that remains

is estimating the TTD from the current checkpoint. Assume

that there are n number of checkpoints between the initial

TABLE II: Characteristics of two routes in the two cities. Kharagpur
is richer in terms of non-volatile landmarks, has a better landmark
density and hence low mean localization error.

City Durgapur Kharagpur

Distance Covered(in kms) 23 10
Total Landmarks 89 50

Turns (Detected in Avg.) 32(31) 9(9)
Speed Breakers (Detected in Avg.) 10(9) 33(31)

Stops (Detected in Avg.) 49(38) 8(7)
Avg. Landmark density (per km) 3.8 5
Avg. Localization Error (mts) 50 42

checkpoint and the final checkpoint. Further assume that the

bus has already passed m checkpoints. Then the estimated

TTD (Test) is derived as follows;

Texp =

n−1
∑

i=m

p(i,i+1) ∗ g(i,i+1) (3)

VI. EVALUATION

In this section, we explain the experiments in details along

with the developed applications and the competing algorithm.

Next we show the experimental results demonstrating the

performance of UrbanEye.

A. Experimental setup

Fig. 7: Application Screen-shots: (a) Data Logging Application

(b) and (c) UrbanEye

In our experiment, one of the key components is the

landmark data acquisition, which we implement by war-

driving. We develop an android application which logs data

from different inertial sensors available on the phone along

with GSM hand-offs and Wi-Fi APs. The application contains

separate buttons for manual annotation of the landmarks while

taking trail on a bus. In the experiment, we take a bus and start

logging data using the application, and whenever we see that

the bus is encountering a landmark (such as a speed breaker or

a turn), we annotate the corresponding landmark through the

application. We collect a month time sensor trails for up and

down trips (60 trails) for two routes; one each in Durgapur and

Kharagpur. Total coverage of the routes is ≈ 75 kms. These

data have been further used for the creation of the database

and also for learning the signatures for different landmarks.

The trails were taken with the help of multiple smartphones

namely, Google Nexus4, Micromax A092, Samsung Galaxy

 0

 200

 400

 600

 800

 1000

L
o

c
a

li
z
a

ti
o

n
 E

rr
o

r
(m

)

Route (Source to Destination)

(b) Localization Error Over a Route

High landmark density Dejavu
Low landmark density Dejavu

On-server UrbanEye
Off-server UrbanEye

 0

 10000

 20000

 30000

 40000

 50000

2 4 6 8 10 12 14 16 18 20 22 24

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

m
J

)

Time (minutes)

(c) Comparison of Energy Consumption

Off-server
On-server

GPS
Dejavu(No Wi-Fi)

 20

 40

 60

 80

 100

 120

 140

3 6 10 15

L
o

c
a

li
z
a

ti
o

n
 E

rr
o

r
(m

)

Trail length (Kms)

(a) Localization Error Over Multiple Routes

On-Server
Off-Server

Dejavu

 0

 10

 20

 30

 40

 50

4 6 8 12 15 22

E
rr

o
r

P
e

rc
e

n
ta

g
e

Trail length (Kms)

(d) Comparison of TTD Error

Google Maps
UrbanEye

Fig. 8: Evaluation Results: (a) and (b) Evaluation of localization error, (c) Evaluation of energy consumption and (d) Evaluation

of TTD error

Tab 3, Xiaomi Mi4i, Motorola MotoG2, Google Nexus7,

OnePlus One and Yu Yureka . Fig. 7a shows the user interface

of this application.

UrbanEye basically works in two phases. The first being

the initialization of the user. Fig. 7(b) shows the interface

of this phase. The user selects her source and destination

from the Google map embedded in the application. UrbanEye

calculates the stops closest to these locations (to create the

corresponding PTA) and reports the TTD to the user. Next, in

the second phase, navigation starts; we develop two versions of

the application depending on the choice of availing the Google

API assistance. First of all, the application downloads the PTA

from the server to the local device. Next the device samples

the user traces every 3 seconds and locally runs the landmark

detection and searching algorithm. If the algorithm detects a

landmark, then its corresponding location (obtained from the

PTA) and the modified TTD is reported to the user. But if

no landmark is detected, then the next position is computed

using the Vincenty’s Formula [13]. In this version, which we

call off-server version, we do not use Google Map API. In

the second version which we term on-server version, to make

the new position less error prone, the application invokes the

snapToRoads Google API to further calibrate the predicted

position. Fig. 7(c) shows a screen-shot of this phase. The icon

of the bus shows the current location and the red dots show

the previous locations.

Competing heuristics: We have taken Dejavu [1] as a

competing algorithm. Since Dejavu is not publicly available

we have re-implemented the Dejavu system. As a sanity

check, we have verified the performance of the implemented

system under proposed (in Dejavu’s paper) level of density of

landmarks and have found it to exhibit similar range of error

as reported in the paper.

Dejavu heuristics: Dejavu is a localization approach im-

plemented for the private car transport system. It performs

localization on the basis of anchor points located all over the

route. It uses inertial sensors say Accelerometer, Gyroscope

and compass for the detection of physical anchors like speed

breakers, turns, tunnels, bridges etc. and uses Wi-Fi Access

Points and GSM towers as virtual anchors. However tunnels

and bridges are very difficult to detect in our scenario as they

heavily rely on road conditions and GSM signal strength which

are extremely poor in the aforesaid cities. Dejavu algorithm

starts with an initial latitude and longitude, takes readings from

different sensors on the smart-phone for a time window and

dispatches it to the server whereby the server deduces the next

latitude and longitude.

B. Experimental results

In experimental section, we first present UrbanEye’s per-

formance vis-a-vis Dejavu and then analyze various features

of UrbanEye to understand the reason behind its superior

performance.

1) Comparison in terms of Localization: We run UrbanEye

on one route each in Durgapur and Kharagpur respectively,

from which we have also taken sub-routes of varying lengths

of 3, 6, 10 and 15 kms to illustrate our results. Fig. 8(a)

shows that UrbanEye clearly outperforms Dejavu in term of

localization error. However, the localization error increases

with the increase in the length of the route, the worst case

average localization error is around 50m for the 15km route.

The result also illustrates the fact that assistance of Google

API reduces the localization error, nevertheless, absence of the

API also leads to a decent performance; absence of Google

API in a 15km trail results in a localization error of around

57m. Fig. 8(b) shows the variation of localization error over a

complete route. This is interesting to observe that UrbanEye

performs exceptionally well (localization error around 45m) in

a route with low landmark density, even without Google API

assistance (localization error around 60m) whereas in Dejavu,

average localization error is found to be around 120m (50%
less than UrbanEye off-server) in the dense patch (with more

number of landmarks per km) and around 524m in the sparse

patch in the route.

2) Comparison in terms of Energy Consumption: We il-

lustrate the performance of UrbanEye in the light of energy

consumption. Since Dejavu makes use of same sensors as

UrbanEye, in the context of energy, the GPS based system

becomes a major contender. We measure the cumulative con-

sumption after every 2 minutes. Fig. 8(b) shows that both on-

server version of UrbanEye and Dejavu consume significantly

less amount of energy compared to GPS at every interval.

Overall the energy consumed by our system was 235.25J over
the trail while GPS consumes almost double, i.e. 508.61J.
Important to note that the off-server version of UrbanEye

consumes really mini-scale amount of energy (decreases by

86%) and we do not sacrifice too much on accuracy.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 200 400 600 800 1000 1200

T
T

D
 (

S
e
c
o

n
d

s
)

Time elapsed (Seconds)

(a)Comparison of TTD

Original
Estimated

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0 50 100 150 200 250

T
T

D
 (

S
e
c
o

n
d

s
)

Time elapsed (Seconds)

(b)Impact of Landmark on TTD

Original
Turns

Stops+Turns
All

Fig. 9: Evaluation of TTD: (a) w.r.t. actual data and (b) Impact

of inclusion/exclusion of landmarks

3) Comparison in terms of Time to Destination (TTD):

We evaluate UrbanEye in terms of TTD against two different

metrics (a) service offered by the Google map (b) ground truth:

the actual time taken to reach the destination. Google map is

a resource sensitive but popular tool to estimate the TTD. In

Fig. 8(d), we show that UrbanEye gives a little better estimate

of public navigation compared to Google map. The Google

map surprisingly performs poorly because it cannot estimate

the wait-time of a bus in various stops which is sometimes

absolutely erratic - UrbanEye maintains history of that and

accordingly adjusts.

Fig. 9a shows that UrbanEye quite accurately estimates the

actual travel time to destination. The maximum deviation is

observed to be around 7 minutes in a small stretch and the

mean error is about 2.5 minutes. The deviation of 7 minutes

that we see was actually observed in a patch in the route, due

to scarcity of landmarks.

The above results shows superior performance of UrbanEye

compared to Dejavu and Google maps in terms of achieving

much better localization accuracy and TTD estimate, respec-

tively. In the following subsections (VI-C to VI-E) we study

the impact of different category of landmarks in achieving the

performance gains. Especially we are interested to ponder over

the importance of volatile landmark stops over the non-volatile

ones.

C. Performance evaluation - Detection of landmarks

The accuracy of UrbanEye depends upon how accurately it

identifies both non-volatile and volatile landmarks. In Table

III, we show the accuracy of the detection strategies evaluated

over a route. As can be seen, turns and speed-breakers have

TABLE III: Accuracy of Landmark Detection; FP: False positives,
FPE: False positives after elimination by PTA guard intervals

Landmark Actual Detected (%) FP (%) FPE (%)

Turn 32 31(96.8) 10(31.2) 0(0)
Speed Breaker 9 8(87.5) 3(37.5) 0(0)
Stops 42 34(80.9) 13(38.2) 2(4.76)

very high detection percentage. However, note that the number

of false positive cases whereby other events wrongly identified

as turns or speed-breakers are also high. This problem is

efficiently tackled by the PTA construction where the concept

of guard time enables the elimination of such false positives,

we see that almost all the false positives are removed in case

of turns and speed-breakers. As there are many volatile stops

so it is expected that not all the stops in a trail will be detected

- the accuracy is around 80%. On the other hand, several noisy

stops or jams add up to the false positive cases. Since already

there are misses, the systems performance regarding removal

of false positives in case of stops slightly deteriorates.

D. Performance evaluation - Impact of Landmarks in TTD

estimation

We analyze the impact of individual landmark on the TTD

estimation and on the localization error and extract the most

important landmarks for localization. First we consider only

turns in a trail and perform the experiments over a smaller

stretch of the trail. We then repeat the same experiment

considering turns and stops together, and so on. Fig. 9(b)

shows a comparison of TTD for these 4 trails. As per intuition,

it can be easily observed that inclusion of landmarks improves

the time estimation considerably. Considering only turns, the

mean error in time estimation is more than 10 minutes which

reduces to 7 minutes with inclusion of stops. This further

reduces to 4 minutes on including all three (turns, stop and

speed breakers) together.

E. Performance Evaluation - Localization Error between two

landmarks

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600 700 800 900 1000

L
o

c
a
li
z
a
ti

o
n

 E
rr

o
r

(m
)

Inter-Landmark Distance (m)

Between Non-Volatile, Volatile
Between Non-Volatile, Non-Volatile

Between Volatile, Volatile

Fig. 10: Impact of Inter-landmark Distance over Localization

Error

We analyze two aspects here (a) the impact of inter-

landmark distance on error and (b) the impact of the nature

of consecutive landmark pair. Fig. 10 draws the scatter plot

considering three types of pair (both landmarks volatile (V-

V), both being non-volatile (NV-NV) or a volatile-non-volatile

pair (V-NV)). The impact of inter-landmark distance is clearly

visible; the localization error increases with distance. The

performance rank of the three sets are - V-NV pair being the

best, but NV-NV pair performs a little worse. The reason is a

bus doesn’t stop in speed-breakers or turns as a result the speed

is not exactly adjusted in the database. The performance of V-

V is worst because there are several false negatives whereby

a quick stoppage is missed accumulating large error.

The insights drawn from the above results can be sum-

marized as following: we observe superior performance of

UrbanEye (both on-server and off-server) compared to De-

javu in terms of achieving much better localization accuracy

both in on-server and off-server versions. However, UrbanEye

(on-server) and Dejavu consumes almost same energy. But

UrbanEye (off-server) consumes significantly less energy than

Dejavu with a slightly reduced accuracy. Secondly, compared

to Google maps, UrbanEye provides a much better estimate

of TTD, which is almost close to the actual time taken. It

shows that the PTA successfully modeled both the temporal

and spatial irregularities. Thirdly, the guard time is able to

completely eliminate the cases of false detection for non-

volatile landmarks and significantly reduce the number for

volatile landmarks (stops). Fourthly, the inclusion of volatile

landmarks (a novel feature of our framework) has significant

impact in performance gains.

VII. STATE OF THE ART

There are number of works to resolve the issues of GPS

through the use of inertial sensors. Works like Compacc [9],

smartNavi [11] have made good use of the inertial sensors

for outdoor pedestrian localization. While Compacc proposes

use of accelerometer, compass with Google maps API to help

pedestrian localization, smartNavi offers an efficient GPS-

independent application which detects every step made and

maps the position in corresponding direction. However, both

the techniques fail miserably for other mode of transportation

due to the step-based algorithm. HowLongToWait [5] uses cell-

phone tower information (cellid) along with the inertial sensors

for arrival time prediction in vehicular navigation. Dejavu [1]

includes Wi-Fi in addition to other sensors previously men-

tioned for private navigation systems.

Landmark detection, which is one of the foundations of our

work, has been worked upon by a few works like Pothole

patrol [14] and Wolverine [15]. Pothole patrol analyses road

conditions to detect potholes using external sensors which are

pretty accurate but bring in extra hardwares. Whereas, Wolver-

ine detects road congestion and speed breakers through the use

of sensors available in smart-phones. Easytracker [6] uses GPS

logs for identifying the landmarks but it will fail as well for

developing countries where local ground truth information is

missing on the map. Bumping [16] method is used to improve

the positioning accuracy by exploiting the information of speed

bumps readily available in parking garages which can be used

as a means for the inertial navigation systems to correct its

position and velocity. Bump matching algorithm provides an

accuracy of around 5 meters, which matches the detected

landmark to the right bumps.

VIII. CONCLUSION

The public good for developing countries clearly demands

an assisting technology for transport navigation. In this paper,

we exploit the advantages of growing smart-phone penetra-

tions in such countries to design an assisting technology for

bus localization and travel-time prediction. We designed a

system based on inertial sensors only which is significantly

less power-hungry than GPS. The proposed technology, Ur-

banEye, constructs a navigation map considering different

physical landmarks at the routes, both volatile and non-

volatile. The non-volatility and irregular bus movements are

tackled using probabilistic timed automata. The extensive test

runs of UrbanEye at two different cities show that the off-

server version of UrbanEye performs significantly better than

Dejavu but also requires much less energy.

ACKNOWLEDGEMENT

The authors would like to thank Information Technology

Research Academy (ITRA), Department of Electronics and

Information Technology (DeitY), Government of India, for

supporting this work under the research project “Post disas-

ter situation analysis and resource management using delay

tolerant peer to peer wireless networks (DISARM)”, sanction

letter number and date ITRA/15(58)/MOBILE/DISRAM/01,

Dt. 19-09-2013.

REFERENCES

[1] H. Aly and M. Youssef, “Dejavu: An accurate energy-efficient outdoor
localization system,” in Proc. of SIGSPATIAL’13. New York, NY, USA:
ACM, 2013, pp. 154–163.

[2] “Transport in India,” https://en.wikipedia.org/wiki/Transport in India.
[3] R. Mandal, N. Agarwal, S. Nandi, P. Das, A. Anvit, S. Sanyal, and

S. Saha, “Stoppage pattern analysis of public bus GPS traces in
developing regions,” in Proc. of PerCom ’15, 2015, pp. 276–279.

[4] M. Youssef, M. Yosef, and M. El-Derini, “Gac: Energy-efficient hybrid
gps-accelerometer-compass gsm localization,” in Proc. of IEEE GLOBE-

COM ’10, Dec 2010, pp. 1–5.
[5] P. Zhou, Y. Zheng, and M. Li, “How long to wait? predicting bus arrival

time with mobile phone based participatory sensing,” IEEE Transactions

on Mobile Computing, vol. 13, no. 6, pp. 1228–1241, June 2014.
[6] J. Biagioni, T. Gerlich, T. Merrifield, and J. Eriksson, “Easytracker:

Automatic transit tracking, mapping, and arrival time prediction using
smartphones,” in Proc. of SenSys ’11. New York, NY, USA: ACM,
2011, pp. 68–81.

[7] T. Stockx, B. Hecht, and J. Schöning, “Subwayps: Towards smartphone
positioning in underground public transportation systems,” in Proc. of

ACM SIGSPATIAL ’14. New York, NY, USA: ACM, 2014, pp. 93–102.
[8] A. Thiagarajan, J. Biagioni, T. Gerlich, and J. Eriksson, “Cooperative

transit tracking using smart-phones,” in Proc. of ACM SenSys ’10. New
York, NY, USA: ACM, 2010, pp. 85–98.

[9] I. Constandache, R. Roy, and C. I. Rhee, “Compacc: Using mobile phone
compasses and accelerometers for localization,” in Proc. of INFOCOM

’10, 2010.
[10] H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, and R. R.

Choudhury, “No need to war-drive: Unsupervised indoor localization,”
in Proc. of MobiSys ’12. New York, NY, USA: ACM, 2012, pp. 197–
210.

[11] “SmartNavi,” http://smartnavi-app.com/home.
[12] M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang, “Symbolic

model checking for probabilistic timed automata,” in Modelling and

Analysis of Timed and Fault-Tolerant Systems Formal Techniques.
Springer, 2004, pp. 293–308.

[13] T. Vincenty, “Transformation of co-ordinates between geodetic systems,”
Survey Review, vol. 18, no. 137, pp. 128–133, 1965.

[14] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakr-
ishnan, “The pothole patrol: using a mobile sensor network for road
surface monitoring,” in Proc. of MobiSys ’08. ACM, 2008, pp. 29–39.

[15] R. Bhoraskar, N. Vankadhara, B. Raman, and P. Kulkarni, “Wolverine:
Traffic and road condition estimation using smartphone sensors,” in
Proc. of COMSNETS ’12, Jan 2012, pp. 1–6.

[16] G. Tan, M. Lu, F. Jiang, K. Chen, X. Huang, and J. Wu, “Bumping:
A bump-aided inertial navigation method for indoor vehicles using
smartphones,” IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 7, pp. 1670–1680, 2014.

